File size: 7,355 Bytes
5b8270b
 
 
 
 
 
5daaa78
ea808ab
5b8270b
 
ea808ab
5b8270b
ea808ab
 
5b8270b
be24378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b8270b
be24378
5b8270b
 
 
be24378
 
 
 
 
 
 
 
 
 
8655f65
be24378
 
 
 
 
 
 
 
 
 
 
5b8270b
031d0a1
 
 
 
 
 
 
 
 
be24378
5d792ae
aaa3b90
be24378
5b8270b
be24378
5d792ae
5b8270b
031d0a1
 
5b8270b
 
be24378
56732fb
5b8270b
 
 
 
e982174
5b8270b
 
 
 
 
 
be24378
eaac997
5b8270b
 
e982174
be24378
 
 
 
 
 
 
 
8655f65
 
be24378
 
 
 
66818c2
 
 
 
 
 
 
 
 
be24378
097eb9b
5b8270b
097eb9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e982174
66818c2
56732fb
5b8270b
097eb9b
5b8270b
 
 
be24378
56732fb
5b8270b
be24378
e982174
be24378
e982174
be24378
e982174
5b8270b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
#from kontext_pipeline import FluxKontextPipeline
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image

# Load Kontext model
MAX_SEED = np.iinfo(np.int32).max

pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")

def concatenate_images(images, direction="horizontal"):
    """
    Concatenate multiple PIL images either horizontally or vertically.
    
    Args:
        images: List of PIL Images
        direction: "horizontal" or "vertical"
    
    Returns:
        PIL Image: Concatenated image
    """
    if not images:
        return None
    
    # Filter out None images
    valid_images = [img for img in images if img is not None]
    
    if not valid_images:
        return None
    
    if len(valid_images) == 1:
        return valid_images[0].convert("RGB")
    
    # Convert all images to RGB
    valid_images = [img.convert("RGB") for img in valid_images]
    
    if direction == "horizontal":
        # Calculate total width and max height
        total_width = sum(img.width for img in valid_images)
        max_height = max(img.height for img in valid_images)
        
        # Create new image
        concatenated = Image.new('RGB', (total_width, max_height), (255, 255, 255))
        
        # Paste images
        x_offset = 0
        for img in valid_images:
            # Center image vertically if heights differ
            y_offset = (max_height - img.height) // 2
            concatenated.paste(img, (x_offset, y_offset))
            x_offset += img.width
            
    else:  # vertical
        # Calculate max width and total height
        max_width = max(img.width for img in valid_images)
        total_height = sum(img.height for img in valid_images)
        
        # Create new image
        concatenated = Image.new('RGB', (max_width, total_height), (255, 255, 255))
        
        # Paste images
        y_offset = 0
        for img in valid_images:
            # Center image horizontally if widths differ
            x_offset = (max_width - img.width) // 2
            concatenated.paste(img, (x_offset, y_offset))
            y_offset += img.height
    
    return concatenated

@spaces.GPU
def infer(input_images, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, progress=gr.Progress(track_tqdm=True)):
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    # Handle input_images - it could be a single image or a list of images
    if input_images is None:
        raise gr.Error("Please upload at least one image.")
    
    # If it's a single image (not a list), convert to list
    if not isinstance(input_images, list):
        input_images = [input_images]
    
    # Filter out None images
    valid_images = [img[0] for img in input_images if img is not None]
    
    if not valid_images:
        raise gr.Error("Please upload at least one valid image.")
    
    # Concatenate images horizontally
    concatenated_image = concatenate_images(valid_images, "horizontal")
    
    if concatenated_image is None:
        raise gr.Error("Failed to process the input images.")
    
    # original_width, original_height = concatenated_image.size
    
    # if original_width >= original_height:
    #     new_width = 1024
    #     new_height = int(original_height * (new_width / original_width))
    #     new_height = round(new_height / 64) * 64
    # else:
    #     new_height = 1024
    #     new_width = int(original_width * (new_height / original_height))
    #     new_width = round(new_width / 64) * 64
    
    #concatenated_image_resized = concatenated_image.resize((new_width, new_height), Image.LANCZOS)

    final_prompt = f"From the provided reference images, create a unified, cohesive image such that {prompt}. Maintain the identity and characteristics of each subject while adjusting their proportions, scale, and positioning to create a harmonious, naturally balanced composition. Blend and integrate all elements seamlessly with consistent lighting, perspective, and style.the final result should look like a single naturally captured scene where all subjects are properly sized and positioned relative to each other, not assembled from multiple sources."
    
    image = pipe(
        image=concatenated_image, 
        prompt=final_prompt,
        guidance_scale=guidance_scale,
        # width=new_width,
        # height=new_height,
        generator=torch.Generator().manual_seed(seed),
    ).images[0]
    
    return image, seed, gr.update(visible=True)

css="""
#col-container {
    margin: 0 auto;
    max-width: 960px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 Kontext [dev] - Multi-Image
        Flux Kontext with multiple image input support - compose a new image with elements from multiple images using Kontext [dev]
        """)
        with gr.Row():
            with gr.Column():
                input_images = gr.Gallery(
                    label="Upload image(s) for editing", 
                    show_label=True,
                    elem_id="gallery_input",
                    columns=3,
                    rows=2,
                    object_fit="contain",
                    height="auto",
                    file_types=['image'],
                    type='pil'
                )
                

                
                with gr.Row():
                    prompt = gr.Text(
                        label="Prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
                        container=False,
                    )
                    run_button = gr.Button("Run", scale=0)
                    
                with gr.Accordion("Advanced Settings", open=False):
            
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=0,
                    )
                    
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                    
                    guidance_scale = gr.Slider(
                        label="Guidance Scale",
                        minimum=1,
                        maximum=10,
                        step=0.1,
                        value=2.5,
                    )       
                    
            with gr.Column():
                result = gr.Image(label="Result", show_label=False, interactive=False)
                reuse_button = gr.Button("Reuse this image", visible=False)
        
        
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [input_images, prompt, seed, randomize_seed, guidance_scale],
        outputs = [result, seed, reuse_button]
    )
    
    reuse_button.click(
        fn = lambda image: [image] if image is not None else [],  # Convert single image to list for gallery
        inputs = [result],
        outputs = [input_images]
    )

demo.launch()