|
import collections |
|
import os.path |
|
import sys |
|
import gc |
|
from collections import namedtuple |
|
import torch |
|
import re |
|
import safetensors.torch |
|
from omegaconf import OmegaConf |
|
|
|
from ldm.util import instantiate_from_config |
|
|
|
from modules import shared, modelloader, devices, script_callbacks, sd_vae |
|
from modules.paths import models_path |
|
from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting |
|
|
|
model_dir = "Stable-diffusion" |
|
model_path = os.path.abspath(os.path.join(models_path, model_dir)) |
|
|
|
CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name', 'config']) |
|
checkpoints_list = {} |
|
checkpoints_loaded = collections.OrderedDict() |
|
|
|
try: |
|
|
|
|
|
from transformers import logging, CLIPModel |
|
|
|
logging.set_verbosity_error() |
|
except Exception: |
|
pass |
|
|
|
|
|
def setup_model(): |
|
if not os.path.exists(model_path): |
|
os.makedirs(model_path) |
|
|
|
list_models() |
|
|
|
|
|
def checkpoint_tiles(): |
|
convert = lambda name: int(name) if name.isdigit() else name.lower() |
|
alphanumeric_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)] |
|
return sorted([x.title for x in checkpoints_list.values()], key = alphanumeric_key) |
|
|
|
|
|
def list_models(): |
|
checkpoints_list.clear() |
|
model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"]) |
|
|
|
def modeltitle(path, shorthash): |
|
abspath = os.path.abspath(path) |
|
|
|
if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir): |
|
name = abspath.replace(shared.cmd_opts.ckpt_dir, '') |
|
elif abspath.startswith(model_path): |
|
name = abspath.replace(model_path, '') |
|
else: |
|
name = os.path.basename(path) |
|
|
|
if name.startswith("\\") or name.startswith("/"): |
|
name = name[1:] |
|
|
|
shortname = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0] |
|
|
|
return f'{name} [{shorthash}]', shortname |
|
|
|
cmd_ckpt = shared.cmd_opts.ckpt |
|
if os.path.exists(cmd_ckpt): |
|
h = model_hash(cmd_ckpt) |
|
title, short_model_name = modeltitle(cmd_ckpt, h) |
|
checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name, shared.cmd_opts.config) |
|
shared.opts.data['sd_model_checkpoint'] = title |
|
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file: |
|
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr) |
|
for filename in model_list: |
|
h = model_hash(filename) |
|
title, short_model_name = modeltitle(filename, h) |
|
|
|
basename, _ = os.path.splitext(filename) |
|
config = basename + ".yaml" |
|
if not os.path.exists(config): |
|
config = shared.cmd_opts.config |
|
|
|
checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name, config) |
|
|
|
|
|
def get_closet_checkpoint_match(searchString): |
|
applicable = sorted([info for info in checkpoints_list.values() if searchString in info.title], key = lambda x:len(x.title)) |
|
if len(applicable) > 0: |
|
return applicable[0] |
|
return None |
|
|
|
|
|
def model_hash(filename): |
|
try: |
|
with open(filename, "rb") as file: |
|
import hashlib |
|
m = hashlib.sha256() |
|
|
|
file.seek(0x100000) |
|
m.update(file.read(0x10000)) |
|
return m.hexdigest()[0:8] |
|
except FileNotFoundError: |
|
return 'NOFILE' |
|
|
|
|
|
def select_checkpoint(): |
|
model_checkpoint = shared.opts.sd_model_checkpoint |
|
checkpoint_info = checkpoints_list.get(model_checkpoint, None) |
|
if checkpoint_info is not None: |
|
return checkpoint_info |
|
|
|
if len(checkpoints_list) == 0: |
|
print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr) |
|
if shared.cmd_opts.ckpt is not None: |
|
print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr) |
|
print(f" - directory {model_path}", file=sys.stderr) |
|
if shared.cmd_opts.ckpt_dir is not None: |
|
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr) |
|
print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr) |
|
exit(1) |
|
|
|
checkpoint_info = next(iter(checkpoints_list.values())) |
|
if model_checkpoint is not None: |
|
print(f"Checkpoint {model_checkpoint} not found; loading fallback {checkpoint_info.title}", file=sys.stderr) |
|
|
|
return checkpoint_info |
|
|
|
|
|
chckpoint_dict_replacements = { |
|
'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.', |
|
'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.', |
|
'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.', |
|
} |
|
|
|
|
|
def transform_checkpoint_dict_key(k): |
|
for text, replacement in chckpoint_dict_replacements.items(): |
|
if k.startswith(text): |
|
k = replacement + k[len(text):] |
|
|
|
return k |
|
|
|
|
|
def get_state_dict_from_checkpoint(pl_sd): |
|
pl_sd = pl_sd.pop("state_dict", pl_sd) |
|
pl_sd.pop("state_dict", None) |
|
|
|
sd = {} |
|
for k, v in pl_sd.items(): |
|
new_key = transform_checkpoint_dict_key(k) |
|
|
|
if new_key is not None: |
|
sd[new_key] = v |
|
|
|
pl_sd.clear() |
|
pl_sd.update(sd) |
|
|
|
return pl_sd |
|
|
|
|
|
def read_state_dict(checkpoint_file, print_global_state=False, map_location=None): |
|
_, extension = os.path.splitext(checkpoint_file) |
|
if extension.lower() == ".safetensors": |
|
pl_sd = safetensors.torch.load_file(checkpoint_file, device=map_location or shared.weight_load_location) |
|
else: |
|
pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location) |
|
|
|
if print_global_state and "global_step" in pl_sd: |
|
print(f"Global Step: {pl_sd['global_step']}") |
|
|
|
sd = get_state_dict_from_checkpoint(pl_sd) |
|
return sd |
|
|
|
|
|
def load_model_weights(model, checkpoint_info, vae_file="auto"): |
|
checkpoint_file = checkpoint_info.filename |
|
sd_model_hash = checkpoint_info.hash |
|
|
|
cache_enabled = shared.opts.sd_checkpoint_cache > 0 |
|
|
|
if cache_enabled and checkpoint_info in checkpoints_loaded: |
|
|
|
print(f"Loading weights [{sd_model_hash}] from cache") |
|
model.load_state_dict(checkpoints_loaded[checkpoint_info]) |
|
else: |
|
|
|
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") |
|
|
|
sd = read_state_dict(checkpoint_file) |
|
model.load_state_dict(sd, strict=False) |
|
del sd |
|
|
|
if cache_enabled: |
|
|
|
checkpoints_loaded[checkpoint_info] = model.state_dict().copy() |
|
|
|
if shared.cmd_opts.opt_channelslast: |
|
model.to(memory_format=torch.channels_last) |
|
|
|
if not shared.cmd_opts.no_half: |
|
vae = model.first_stage_model |
|
|
|
|
|
if shared.cmd_opts.no_half_vae: |
|
model.first_stage_model = None |
|
|
|
model.half() |
|
model.first_stage_model = vae |
|
|
|
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 |
|
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 |
|
|
|
model.first_stage_model.to(devices.dtype_vae) |
|
|
|
|
|
if cache_enabled: |
|
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache + 1: |
|
checkpoints_loaded.popitem(last=False) |
|
|
|
model.sd_model_hash = sd_model_hash |
|
model.sd_model_checkpoint = checkpoint_file |
|
model.sd_checkpoint_info = checkpoint_info |
|
|
|
vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file) |
|
sd_vae.load_vae(model, vae_file) |
|
|
|
|
|
def load_model(checkpoint_info=None): |
|
from modules import lowvram, sd_hijack |
|
checkpoint_info = checkpoint_info or select_checkpoint() |
|
|
|
if checkpoint_info.config != shared.cmd_opts.config: |
|
print(f"Loading config from: {checkpoint_info.config}") |
|
|
|
if shared.sd_model: |
|
sd_hijack.model_hijack.undo_hijack(shared.sd_model) |
|
shared.sd_model = None |
|
gc.collect() |
|
devices.torch_gc() |
|
|
|
sd_config = OmegaConf.load(checkpoint_info.config) |
|
|
|
if should_hijack_inpainting(checkpoint_info): |
|
|
|
sd_config.model.target = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion" |
|
sd_config.model.params.use_ema = False |
|
sd_config.model.params.conditioning_key = "hybrid" |
|
sd_config.model.params.unet_config.params.in_channels = 9 |
|
|
|
|
|
checkpoint_info = checkpoint_info._replace(config=checkpoint_info.config.replace(".yaml", "-inpainting.yaml")) |
|
|
|
do_inpainting_hijack() |
|
|
|
if shared.cmd_opts.no_half: |
|
sd_config.model.params.unet_config.params.use_fp16 = False |
|
|
|
sd_model = instantiate_from_config(sd_config.model) |
|
load_model_weights(sd_model, checkpoint_info) |
|
|
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: |
|
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram) |
|
else: |
|
sd_model.to(shared.device) |
|
|
|
sd_hijack.model_hijack.hijack(sd_model) |
|
|
|
sd_model.eval() |
|
shared.sd_model = sd_model |
|
|
|
script_callbacks.model_loaded_callback(sd_model) |
|
|
|
print(f"Model loaded.") |
|
return sd_model |
|
|
|
|
|
def reload_model_weights(sd_model=None, info=None): |
|
from modules import lowvram, devices, sd_hijack |
|
checkpoint_info = info or select_checkpoint() |
|
|
|
if not sd_model: |
|
sd_model = shared.sd_model |
|
|
|
if sd_model.sd_model_checkpoint == checkpoint_info.filename: |
|
return |
|
|
|
if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info): |
|
del sd_model |
|
checkpoints_loaded.clear() |
|
load_model(checkpoint_info) |
|
return shared.sd_model |
|
|
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: |
|
lowvram.send_everything_to_cpu() |
|
else: |
|
sd_model.to(devices.cpu) |
|
|
|
sd_hijack.model_hijack.undo_hijack(sd_model) |
|
|
|
load_model_weights(sd_model, checkpoint_info) |
|
|
|
sd_hijack.model_hijack.hijack(sd_model) |
|
script_callbacks.model_loaded_callback(sd_model) |
|
|
|
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: |
|
sd_model.to(devices.device) |
|
|
|
print(f"Weights loaded.") |
|
return sd_model |
|
|