Spaces:
Sleeping
Sleeping
Commit
ยท
6364f02
1
Parent(s):
cc9b9f8
๐ Add app
Browse files- .gitignore +5 -0
- app.py +57 -0
- const.py +10 -0
- inference.py +35 -0
- requirements.txt +1 -0
.gitignore
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.env
|
| 2 |
+
|
| 3 |
+
.DS_Store
|
| 4 |
+
|
| 5 |
+
__pycache__
|
app.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import inference
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import const
|
| 5 |
+
|
| 6 |
+
st.title("Japanese to Emotion classification")
|
| 7 |
+
st.write(
|
| 8 |
+
"I fine-tuned the BERT-based distillation model for classification of Japanese text."
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
if "input_text" not in st.session_state:
|
| 12 |
+
st.session_state.input_text = ""
|
| 13 |
+
|
| 14 |
+
input_text = st.text_area(
|
| 15 |
+
"Japanese text", value=st.session_state.input_text, max_chars=512
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
suggestions = ["ไปๆฅใฏๆ็ฌใจๆฃๆญฉใใ", "็ซใซใใง่กใใใ", "่ช่ปข่ป็ใพใใ"]
|
| 19 |
+
|
| 20 |
+
COLUMNS_NUM = len(suggestions)
|
| 21 |
+
cols = st.columns(COLUMNS_NUM)
|
| 22 |
+
|
| 23 |
+
for i, suggestion in enumerate(suggestions):
|
| 24 |
+
with cols[i]:
|
| 25 |
+
if st.button(suggestion, use_container_width=True):
|
| 26 |
+
st.session_state.input_text = suggestion
|
| 27 |
+
st.rerun()
|
| 28 |
+
|
| 29 |
+
st.session_state.input_text = input_text
|
| 30 |
+
|
| 31 |
+
if input_text:
|
| 32 |
+
probs_dict = inference.exec(input_text)
|
| 33 |
+
|
| 34 |
+
label_dict = {
|
| 35 |
+
const.EMOTIONS[0]: "๐ Joy",
|
| 36 |
+
const.EMOTIONS[1]: "๐ข Sadness",
|
| 37 |
+
const.EMOTIONS[2]: "๐ฎ Anticipation",
|
| 38 |
+
const.EMOTIONS[3]: "๐ฒ Surprise",
|
| 39 |
+
const.EMOTIONS[4]: "๐ Anger",
|
| 40 |
+
const.EMOTIONS[5]: "๐จ Fear",
|
| 41 |
+
const.EMOTIONS[6]: "๐ Disgust",
|
| 42 |
+
const.EMOTIONS[7]: "๐ Trust",
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
df = pd.DataFrame(
|
| 46 |
+
{
|
| 47 |
+
"Emotion": label_dict.values(),
|
| 48 |
+
"Probs": [probs_dict[emotion] for emotion in const.EMOTIONS],
|
| 49 |
+
}
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
st.bar_chart(df.set_index("Emotion"), horizontal=True)
|
| 53 |
+
|
| 54 |
+
st.write('''
|
| 55 |
+
- [GitHub](https://github.com/koshin01)
|
| 56 |
+
- [Blog](https://zenn.dev/koshin)
|
| 57 |
+
''')
|
const.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
EMOTIONS = [
|
| 2 |
+
"Joy",
|
| 3 |
+
"Sadness",
|
| 4 |
+
"Anticipation",
|
| 5 |
+
"Surprise",
|
| 6 |
+
"Anger",
|
| 7 |
+
"Fear",
|
| 8 |
+
"Disgust",
|
| 9 |
+
"Trust",
|
| 10 |
+
]
|
inference.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import const
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def load_model():
|
| 8 |
+
return AutoModelForSequenceClassification.from_pretrained(
|
| 9 |
+
"koshin2001/Japanese-to-emotions"
|
| 10 |
+
).eval()
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def load_tokenizer():
|
| 14 |
+
return AutoTokenizer.from_pretrained("koshin2001/Japanese-to-emotions")
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def exec(text):
|
| 18 |
+
model = load_model()
|
| 19 |
+
tokenizer = load_tokenizer()
|
| 20 |
+
|
| 21 |
+
inputs = tokenizer(
|
| 22 |
+
text,
|
| 23 |
+
return_tensors="pt",
|
| 24 |
+
truncation=True,
|
| 25 |
+
return_token_type_ids=False,
|
| 26 |
+
max_length=512,
|
| 27 |
+
)
|
| 28 |
+
output = model(**inputs)
|
| 29 |
+
|
| 30 |
+
output_logits = torch.tensor(output.logits).clone().detach().requires_grad_(True)
|
| 31 |
+
probs = F.softmax(output_logits, dim=-1).tolist()[0]
|
| 32 |
+
|
| 33 |
+
emotion_probs = dict(zip(const.EMOTIONS, probs))
|
| 34 |
+
|
| 35 |
+
return emotion_probs
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
transformers == 4.44.2
|