init
Browse files- README.md +8 -1
- app.py +85 -0
- packages.txt +1 -0
- requirements.txt +6 -0
- sample_diarization_japanese.mp3 +0 -0
README.md
CHANGED
|
@@ -4,9 +4,16 @@ emoji: 👁
|
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.39.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
hf_oauth: true
|
| 11 |
+
hf_oauth_expiration_minutes: 480
|
| 12 |
+
hf_oauth_scopes:
|
| 13 |
+
- read-repos
|
| 14 |
+
- write-repos
|
| 15 |
+
- manage-repos
|
| 16 |
+
- inference-api
|
| 17 |
---
|
| 18 |
|
| 19 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from math import floor
|
| 3 |
+
from typing import Optional
|
| 4 |
+
|
| 5 |
+
import spaces
|
| 6 |
+
import torch
|
| 7 |
+
import gradio as gr
|
| 8 |
+
from transformers import pipeline
|
| 9 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
| 10 |
+
|
| 11 |
+
# config
|
| 12 |
+
model_name = "kotoba-tech/kotoba-whisper-v2.2"
|
| 13 |
+
example_file = "sample_diarization_japanese.mp3"
|
| 14 |
+
|
| 15 |
+
# device setting
|
| 16 |
+
if torch.cuda.is_available():
|
| 17 |
+
torch_dtype = torch.bfloat16
|
| 18 |
+
device = "cuda"
|
| 19 |
+
model_kwargs = {'attn_implementation': 'sdpa'}
|
| 20 |
+
else:
|
| 21 |
+
torch_dtype = torch.float32
|
| 22 |
+
device = "cpu"
|
| 23 |
+
model_kwargs = {}
|
| 24 |
+
|
| 25 |
+
# define the pipeline
|
| 26 |
+
pipe = pipeline(
|
| 27 |
+
model=model_name,
|
| 28 |
+
chunk_length_s=15,
|
| 29 |
+
batch_size=16,
|
| 30 |
+
torch_dtype=torch_dtype,
|
| 31 |
+
device=device,
|
| 32 |
+
model_kwargs=model_kwargs,
|
| 33 |
+
trust_remote_code=True
|
| 34 |
+
)
|
| 35 |
+
sampling_rate = pipe.feature_extractor.sampling_rate
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def format_time(start: Optional[float], end: Optional[float]):
|
| 39 |
+
|
| 40 |
+
def _format_time(seconds: Optional[float]):
|
| 41 |
+
if seconds is None:
|
| 42 |
+
return "[no timestamp available]"
|
| 43 |
+
minutes = floor(seconds / 60)
|
| 44 |
+
hours = floor(seconds / 3600)
|
| 45 |
+
seconds = seconds - hours * 3600 - minutes * 60
|
| 46 |
+
m_seconds = floor(round(seconds - floor(seconds), 1) * 10)
|
| 47 |
+
seconds = floor(seconds)
|
| 48 |
+
return f'{minutes:02}:{seconds:02}.{m_seconds:01}'
|
| 49 |
+
|
| 50 |
+
return f"[{_format_time(start)} -> {_format_time(end)}]:"
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
@spaces.GPU
|
| 54 |
+
def get_prediction(inputs):
|
| 55 |
+
return pipe(inputs, generate_kwargs={"language": "ja", "task": "transcribe"})
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def transcribe(inputs: str):
|
| 59 |
+
if inputs is None:
|
| 60 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
| 61 |
+
with open(inputs, "rb") as f:
|
| 62 |
+
inputs = f.read()
|
| 63 |
+
prediction = get_prediction({"array": ffmpeg_read(inputs, sampling_rate), "sampling_rate": sampling_rate})
|
| 64 |
+
output = ""
|
| 65 |
+
for n, s in enumerate(prediction["speakers"]):
|
| 66 |
+
text_timestamped = "\n".join([f"- **{format_time(*c['timestamp'])}** {c['text']}" for c in prediction[f"chunks/{s}"]])
|
| 67 |
+
output += f'### Speaker {n+1} \n{text_timestamped}\n'
|
| 68 |
+
return output
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
description = (f"Transcribe and diarize long-form microphone or audio inputs with the click of a button! Demo uses "
|
| 72 |
+
f"Kotoba-Whisper [{model_name}](https://huggingface.co/{model_name}).")
|
| 73 |
+
title = f"Audio Transcription and Diarization with {os.path.basename(model_name)}"
|
| 74 |
+
shared_config = {"fn": transcribe, "title": title, "description": description, "allow_flagging": "never", "examples": [example_file]}
|
| 75 |
+
o_upload = gr.Markdown()
|
| 76 |
+
o_mic = gr.Markdown()
|
| 77 |
+
i_upload = gr.Interface(
|
| 78 |
+
inputs=[gr.Audio(sources="upload", type="filepath", label="Audio file")], outputs=gr.Markdown(), **shared_config
|
| 79 |
+
)
|
| 80 |
+
i_mic = gr.Interface(
|
| 81 |
+
inputs=[gr.Audio(sources="microphone", type="filepath", label="Microphone input")], outputs=gr.Markdown(), **shared_config
|
| 82 |
+
)
|
| 83 |
+
with gr.Blocks() as demo:
|
| 84 |
+
gr.TabbedInterface([i_upload, i_mic], ["Audio file", "Microphone"])
|
| 85 |
+
demo.queue(api_open=False, default_concurrency_limit=40).launch(show_api=False, show_error=True)
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/transformers
|
| 2 |
+
git+https://github.com/huggingface/diarizers
|
| 3 |
+
torchaudio
|
| 4 |
+
torch
|
| 5 |
+
punctuators==0.0.5
|
| 6 |
+
pyannote.audio
|
sample_diarization_japanese.mp3
ADDED
|
Binary file (780 kB). View file
|
|
|