Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,7 +2,7 @@ import gradio as gr
|
|
| 2 |
import torch
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 4 |
import time
|
| 5 |
-
import spaces
|
| 6 |
|
| 7 |
# Model configuration
|
| 8 |
MODEL_NAME = "krishna195/medgemma-anatomy-v1.2"
|
|
@@ -48,7 +48,7 @@ def load_model():
|
|
| 48 |
print("Initializing MedGemma...")
|
| 49 |
model, tokenizer = load_model()
|
| 50 |
|
| 51 |
-
@spaces.GPU(duration=60)
|
| 52 |
def generate_response(question, max_tokens=512, temperature=0.7, top_p=0.9):
|
| 53 |
"""
|
| 54 |
Generate medical response for a given question
|
|
@@ -59,51 +59,59 @@ def generate_response(question, max_tokens=512, temperature=0.7, top_p=0.9):
|
|
| 59 |
temperature: Sampling temperature (0.0-1.0)
|
| 60 |
top_p: Nucleus sampling parameter
|
| 61 |
"""
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
{question}<end_of_turn>
|
| 68 |
<start_of_turn>model
|
| 69 |
"""
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
# Example questions
|
| 109 |
examples = [
|
|
@@ -120,6 +128,7 @@ css = """
|
|
| 120 |
#warning {background-color: #FFCCCB; padding: 10px; border-radius: 5px; margin-bottom: 10px;}
|
| 121 |
.generate-btn {background: linear-gradient(90deg, #667eea 0%, #764ba2 100%); color: white;}
|
| 122 |
footer {visibility: hidden;}
|
|
|
|
| 123 |
"""
|
| 124 |
|
| 125 |
# Build Gradio interface
|
|
@@ -183,29 +192,36 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
| 183 |
info="Nucleus sampling parameter"
|
| 184 |
)
|
| 185 |
|
| 186 |
-
generate_btn = gr.Button("Generate Response", variant="primary", elem_classes="generate-btn")
|
|
|
|
| 187 |
|
| 188 |
with gr.Column(scale=3):
|
| 189 |
-
output = gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
with gr.Row():
|
| 192 |
gr.Examples(
|
| 193 |
examples=examples,
|
| 194 |
inputs=question_input,
|
| 195 |
-
label="Example Questions"
|
| 196 |
)
|
| 197 |
|
| 198 |
# Event handlers
|
| 199 |
generate_btn.click(
|
| 200 |
fn=generate_response,
|
| 201 |
inputs=[question_input, max_tokens, temperature, top_p],
|
| 202 |
-
outputs=output
|
|
|
|
| 203 |
)
|
| 204 |
|
| 205 |
question_input.submit(
|
| 206 |
fn=generate_response,
|
| 207 |
inputs=[question_input, max_tokens, temperature, top_p],
|
| 208 |
-
outputs=output
|
|
|
|
| 209 |
)
|
| 210 |
|
| 211 |
gr.Markdown(
|
|
|
|
| 2 |
import torch
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 4 |
import time
|
| 5 |
+
import spaces
|
| 6 |
|
| 7 |
# Model configuration
|
| 8 |
MODEL_NAME = "krishna195/medgemma-anatomy-v1.2"
|
|
|
|
| 48 |
print("Initializing MedGemma...")
|
| 49 |
model, tokenizer = load_model()
|
| 50 |
|
| 51 |
+
@spaces.GPU(duration=60)
|
| 52 |
def generate_response(question, max_tokens=512, temperature=0.7, top_p=0.9):
|
| 53 |
"""
|
| 54 |
Generate medical response for a given question
|
|
|
|
| 59 |
temperature: Sampling temperature (0.0-1.0)
|
| 60 |
top_p: Nucleus sampling parameter
|
| 61 |
"""
|
| 62 |
+
try:
|
| 63 |
+
if not question.strip():
|
| 64 |
+
return "β οΈ Please enter a medical question."
|
| 65 |
+
|
| 66 |
+
# Show processing message
|
| 67 |
+
yield "π **Processing your question...**\n\nGenerating response, please wait..."
|
| 68 |
+
|
| 69 |
+
# Format prompt with Gemma chat template
|
| 70 |
+
prompt = f"""<start_of_turn>user
|
| 71 |
{question}<end_of_turn>
|
| 72 |
<start_of_turn>model
|
| 73 |
"""
|
| 74 |
+
|
| 75 |
+
# Tokenize
|
| 76 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 77 |
+
|
| 78 |
+
# Generate
|
| 79 |
+
start_time = time.time()
|
| 80 |
+
|
| 81 |
+
with torch.no_grad():
|
| 82 |
+
outputs = model.generate(
|
| 83 |
+
**inputs,
|
| 84 |
+
max_new_tokens=max_tokens,
|
| 85 |
+
temperature=temperature,
|
| 86 |
+
do_sample=True,
|
| 87 |
+
top_p=top_p,
|
| 88 |
+
repetition_penalty=1.1,
|
| 89 |
+
pad_token_id=tokenizer.eos_token_id
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
generation_time = time.time() - start_time
|
| 93 |
+
|
| 94 |
+
# Decode response
|
| 95 |
+
full_output = tokenizer.decode(outputs[0], skip_special_tokens=False)
|
| 96 |
+
|
| 97 |
+
# Extract model response
|
| 98 |
+
if "<start_of_turn>model" in full_output:
|
| 99 |
+
response = full_output.split("<start_of_turn>model")[-1]
|
| 100 |
+
response = response.split("<end_of_turn>")[0].strip()
|
| 101 |
+
else:
|
| 102 |
+
response = full_output.strip()
|
| 103 |
+
|
| 104 |
+
# Add metadata
|
| 105 |
+
tokens_generated = outputs.shape[1] - inputs['input_ids'].shape[1]
|
| 106 |
+
tokens_per_sec = tokens_generated / generation_time if generation_time > 0 else 0
|
| 107 |
+
|
| 108 |
+
metadata = f"\n\n---\nβ
*Generated in {generation_time:.2f}s ({tokens_per_sec:.1f} tokens/sec) | Device: {DEVICE.upper()}*"
|
| 109 |
+
|
| 110 |
+
yield response + metadata
|
| 111 |
+
|
| 112 |
+
except Exception as e:
|
| 113 |
+
error_msg = f"β **Error occurred:**\n\n```\n{str(e)}\n```\n\nPlease try again or contact support if the issue persists."
|
| 114 |
+
yield error_msg
|
| 115 |
|
| 116 |
# Example questions
|
| 117 |
examples = [
|
|
|
|
| 128 |
#warning {background-color: #FFCCCB; padding: 10px; border-radius: 5px; margin-bottom: 10px;}
|
| 129 |
.generate-btn {background: linear-gradient(90deg, #667eea 0%, #764ba2 100%); color: white;}
|
| 130 |
footer {visibility: hidden;}
|
| 131 |
+
#output-box {min-height: 200px; border: 1px solid #e0e0e0; border-radius: 8px; padding: 15px;}
|
| 132 |
"""
|
| 133 |
|
| 134 |
# Build Gradio interface
|
|
|
|
| 192 |
info="Nucleus sampling parameter"
|
| 193 |
)
|
| 194 |
|
| 195 |
+
generate_btn = gr.Button("π Generate Response", variant="primary", elem_classes="generate-btn")
|
| 196 |
+
clear_btn = gr.ClearButton([question_input], value="ποΈ Clear")
|
| 197 |
|
| 198 |
with gr.Column(scale=3):
|
| 199 |
+
output = gr.Markdown(
|
| 200 |
+
label="Response",
|
| 201 |
+
value="*Your medical answer will appear here...*",
|
| 202 |
+
elem_id="output-box"
|
| 203 |
+
)
|
| 204 |
|
| 205 |
with gr.Row():
|
| 206 |
gr.Examples(
|
| 207 |
examples=examples,
|
| 208 |
inputs=question_input,
|
| 209 |
+
label="π Example Questions - Click to try"
|
| 210 |
)
|
| 211 |
|
| 212 |
# Event handlers
|
| 213 |
generate_btn.click(
|
| 214 |
fn=generate_response,
|
| 215 |
inputs=[question_input, max_tokens, temperature, top_p],
|
| 216 |
+
outputs=output,
|
| 217 |
+
show_progress=True
|
| 218 |
)
|
| 219 |
|
| 220 |
question_input.submit(
|
| 221 |
fn=generate_response,
|
| 222 |
inputs=[question_input, max_tokens, temperature, top_p],
|
| 223 |
+
outputs=output,
|
| 224 |
+
show_progress=True
|
| 225 |
)
|
| 226 |
|
| 227 |
gr.Markdown(
|