Spaces:
Runtime error
Runtime error
Commit
·
613a03d
1
Parent(s):
9ec9fb6
Upload 5 files
Browse files- Dockerfile +23 -0
- app.py +81 -0
- document.png +0 -0
- invoice.png +0 -0
- requirements.txt +7 -0
Dockerfile
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9
|
| 2 |
+
|
| 3 |
+
RUN pip install virtualenv
|
| 4 |
+
ENV VIRTUAL_ENV=/venv
|
| 5 |
+
RUN virtualenv venv -p python3
|
| 6 |
+
ENV PATH="VIRTUAL_ENV/bin:$PATH"
|
| 7 |
+
WORKDIR /app
|
| 8 |
+
ADD . /app
|
| 9 |
+
|
| 10 |
+
# Install dependencies
|
| 11 |
+
RUN apt-get update
|
| 12 |
+
RUN apt-get install -y tesseract-ocr
|
| 13 |
+
|
| 14 |
+
RUN pip install -r requirements.txt
|
| 15 |
+
|
| 16 |
+
RUN git clone https://github.com/facebookresearch/detectron2.git
|
| 17 |
+
RUN python -m pip install -e detectron2
|
| 18 |
+
|
| 19 |
+
# Expose port
|
| 20 |
+
EXPOSE 5000
|
| 21 |
+
|
| 22 |
+
# Run the application:
|
| 23 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
from transformers import LayoutLMv2Processor, LayoutLMv2ForTokenClassification
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 6 |
+
|
| 7 |
+
processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
| 8 |
+
model = LayoutLMv2ForTokenClassification.from_pretrained("nielsr/layoutlmv2-finetuned-funsd")
|
| 9 |
+
|
| 10 |
+
# load image example
|
| 11 |
+
dataset = load_dataset("nielsr/funsd", split="test")
|
| 12 |
+
image = Image.open(dataset[0]["image_path"]).convert("RGB")
|
| 13 |
+
image = Image.open("./invoice.png")
|
| 14 |
+
image.save("document.png")
|
| 15 |
+
# define id2label, label2color
|
| 16 |
+
labels = dataset.features['ner_tags'].feature.names
|
| 17 |
+
id2label = {v: k for v, k in enumerate(labels)}
|
| 18 |
+
label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
|
| 19 |
+
|
| 20 |
+
def unnormalize_box(bbox, width, height):
|
| 21 |
+
return [
|
| 22 |
+
width * (bbox[0] / 1000),
|
| 23 |
+
height * (bbox[1] / 1000),
|
| 24 |
+
width * (bbox[2] / 1000),
|
| 25 |
+
height * (bbox[3] / 1000),
|
| 26 |
+
]
|
| 27 |
+
|
| 28 |
+
def iob_to_label(label):
|
| 29 |
+
label = label[2:]
|
| 30 |
+
if not label:
|
| 31 |
+
return 'other'
|
| 32 |
+
return label
|
| 33 |
+
|
| 34 |
+
def process_image(image):
|
| 35 |
+
width, height = image.size
|
| 36 |
+
|
| 37 |
+
# encode
|
| 38 |
+
encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
|
| 39 |
+
offset_mapping = encoding.pop('offset_mapping')
|
| 40 |
+
|
| 41 |
+
# forward pass
|
| 42 |
+
outputs = model(**encoding)
|
| 43 |
+
|
| 44 |
+
# get predictions
|
| 45 |
+
predictions = outputs.logits.argmax(-1).squeeze().tolist()
|
| 46 |
+
token_boxes = encoding.bbox.squeeze().tolist()
|
| 47 |
+
|
| 48 |
+
# only keep non-subword predictions
|
| 49 |
+
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
|
| 50 |
+
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
|
| 51 |
+
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
|
| 52 |
+
|
| 53 |
+
# draw predictions over the image
|
| 54 |
+
draw = ImageDraw.Draw(image)
|
| 55 |
+
font = ImageFont.load_default()
|
| 56 |
+
for prediction, box in zip(true_predictions, true_boxes):
|
| 57 |
+
predicted_label = iob_to_label(prediction).lower()
|
| 58 |
+
draw.rectangle(box, outline=label2color[predicted_label])
|
| 59 |
+
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
|
| 60 |
+
|
| 61 |
+
return image
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
title = "Interactive demo: LayoutLMv2"
|
| 65 |
+
description = "Demo for Microsoft's LayoutLMv2, a Transformer for state-of-the-art document image understanding tasks. This particular model is fine-tuned on FUNSD, a dataset of manually annotated forms. It annotates the words appearing in the image as QUESTION/ANSWER/HEADER/OTHER. To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'."
|
| 66 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2012.14740' target='_blank'>LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding</a> | <a href='https://github.com/microsoft/unilm' target='_blank'>Github Repo</a></p>"
|
| 67 |
+
examples =[['document.png']]
|
| 68 |
+
|
| 69 |
+
css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
|
| 70 |
+
|
| 71 |
+
css = ".image-preview {height: auto !important;}"
|
| 72 |
+
|
| 73 |
+
iface = gr.Interface(fn=process_image,
|
| 74 |
+
inputs=gr.components.Image(type="pil"),
|
| 75 |
+
outputs=gr.components.Image(type="pil", label="annotated image"),
|
| 76 |
+
title=title,
|
| 77 |
+
description=description,
|
| 78 |
+
article=article,
|
| 79 |
+
examples=examples,
|
| 80 |
+
css=css)
|
| 81 |
+
iface.launch(debug=True, enable_queue=True, share=True)
|
document.png
ADDED
|
invoice.png
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
Pillow
|
| 3 |
+
numpy
|
| 4 |
+
datasets
|
| 5 |
+
transformers
|
| 6 |
+
torch
|
| 7 |
+
torchvision
|