import gradio as gr from fastai.vision.all import * import pathlib plt = platform.system() if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath path_model = "model_trash.pkl" learn = load_learner(path_model) labels = learn.dls.vocab def predict(img): #img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Kind of trash identifier" description = "Simple (and not very accurate) model for identifying category of trash for recycling purposes. The model was finetuned version of resnet with 34 layers with trash dataset found on github " path_example = "szkl.jpg" examples = [[path_example]] #interpretation function interpretation='default' #queueing traffic enable_queue=True gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3), title=title, description=description, #article=article, # I haven't created that examples=examples, interpretation=interpretation, enable_queue=enable_queue).launch()