Spaces:
Running
Running
Create whisper_cs.py
Browse files- whisper_cs.py +326 -0
whisper_cs.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
from pydub import AudioSegment
|
3 |
+
import os
|
4 |
+
import torchaudio
|
5 |
+
import torch
|
6 |
+
import re
|
7 |
+
from transformers import pipeline, WhisperForConditionalGeneration, WhisperProcessor, GenerationConfig
|
8 |
+
from pyannote.audio import Pipeline as DiarizationPipeline
|
9 |
+
import whisperx
|
10 |
+
import whisper_timestamped as whisper_ts
|
11 |
+
from typing import Dict
|
12 |
+
|
13 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
14 |
+
torch_dtype = torch.float32
|
15 |
+
|
16 |
+
MODEL_PATH_1 = "projecte-aina/whisper-large-v3-tiny-caesar"
|
17 |
+
MODEL_PATH_2 = "langtech-veu/whisper-timestamped-cs"
|
18 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
|
20 |
+
def clean_text(input_text):
|
21 |
+
remove_chars = ['.', ',', ';', ':', '¿', '?', '«', '»', '-', '¡', '!', '@',
|
22 |
+
'*', '{', '}', '[', ']', '=', '/', '\\', '&', '#', '…']
|
23 |
+
output_text = ''.join(char if char not in remove_chars else ' ' for char in input_text)
|
24 |
+
return ' '.join(output_text.split()).lower()
|
25 |
+
|
26 |
+
|
27 |
+
def split_stereo_channels(audio_path):
|
28 |
+
ext = os.path.splitext(audio_path)[1].lower()
|
29 |
+
|
30 |
+
if ext == ".wav":
|
31 |
+
audio = AudioSegment.from_wav(audio_path)
|
32 |
+
elif ext == ".mp3":
|
33 |
+
audio = AudioSegment.from_file(audio_path, format="mp3")
|
34 |
+
else:
|
35 |
+
raise ValueError(f"Unsupported file format: {audio_path}")
|
36 |
+
|
37 |
+
channels = audio.split_to_mono()
|
38 |
+
if len(channels) != 2:
|
39 |
+
raise ValueError(f"Audio {audio_path} does not have 2 channels.")
|
40 |
+
|
41 |
+
channels[0].export(f"temp_mono_speaker1.wav", format="wav") # Right
|
42 |
+
channels[1].export(f"temp_mono_speaker2.wav", format="wav") # Left
|
43 |
+
|
44 |
+
|
45 |
+
def convert_to_mono(input_path):
|
46 |
+
audio = AudioSegment.from_file(input_path)
|
47 |
+
base, ext = os.path.splitext(input_path)
|
48 |
+
output_path = f"{base}_merged.wav"
|
49 |
+
print('output_path',output_path)
|
50 |
+
mono = audio.set_channels(1)
|
51 |
+
mono.export(output_path, format="wav")
|
52 |
+
return output_path
|
53 |
+
|
54 |
+
def save_temp_audio(waveform, sample_rate, path):
|
55 |
+
waveform = waveform.unsqueeze(0) if waveform.dim() == 1 else waveform
|
56 |
+
torchaudio.save(path, waveform, sample_rate)
|
57 |
+
|
58 |
+
def format_audio(audio_path):
|
59 |
+
input_audio, sample_rate = torchaudio.load(audio_path)
|
60 |
+
if input_audio.shape[0] == 2:
|
61 |
+
input_audio = torch.mean(input_audio, dim=0, keepdim=True)
|
62 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
63 |
+
input_audio = resampler(input_audio)
|
64 |
+
print('resampled')
|
65 |
+
return input_audio.squeeze(), 16000
|
66 |
+
|
67 |
+
def assign_timestamps(asr_segments, audio_path):
|
68 |
+
waveform, sr = format_audio(audio_path)
|
69 |
+
total_duration = waveform.shape[-1] / sr
|
70 |
+
|
71 |
+
total_words = sum(len(seg["text"].split()) for seg in asr_segments)
|
72 |
+
if total_words == 0:
|
73 |
+
raise ValueError("Total number of words in ASR segments is zero. Cannot assign timestamps.")
|
74 |
+
|
75 |
+
avg_word_duration = total_duration / total_words
|
76 |
+
|
77 |
+
current_time = 0.0
|
78 |
+
for segment in asr_segments:
|
79 |
+
word_count = len(segment["text"].split())
|
80 |
+
segment_duration = word_count * avg_word_duration
|
81 |
+
segment["start"] = round(current_time, 3)
|
82 |
+
segment["end"] = round(current_time + segment_duration, 3)
|
83 |
+
current_time += segment_duration
|
84 |
+
|
85 |
+
return asr_segments
|
86 |
+
|
87 |
+
def hf_chunks_to_whisperx_segments(chunks):
|
88 |
+
return [
|
89 |
+
{
|
90 |
+
"text": chunk["text"],
|
91 |
+
"start": chunk["timestamp"][0],
|
92 |
+
"end": chunk["timestamp"][1],
|
93 |
+
}
|
94 |
+
for chunk in chunks
|
95 |
+
if chunk["timestamp"] and isinstance(chunk["timestamp"], (list, tuple))
|
96 |
+
]
|
97 |
+
|
98 |
+
def align_words_to_segments(words, segments, window=5.0):
|
99 |
+
aligned = []
|
100 |
+
seg_idx = 0
|
101 |
+
for word in words:
|
102 |
+
while seg_idx < len(segments) and segments[seg_idx]["end"] < word["start"] - window:
|
103 |
+
seg_idx += 1
|
104 |
+
for j in range(seg_idx, len(segments)):
|
105 |
+
seg = segments[j]
|
106 |
+
if seg["start"] > word["end"] + window:
|
107 |
+
break
|
108 |
+
if seg["start"] <= word["start"] < seg["end"]:
|
109 |
+
aligned.append((word, seg))
|
110 |
+
break
|
111 |
+
return aligned
|
112 |
+
|
113 |
+
def post_process_transcription(transcription, max_repeats=2):
|
114 |
+
tokens = re.findall(r'\b\w+\'?\w*\b[.,!?]?', transcription)
|
115 |
+
|
116 |
+
cleaned_tokens = []
|
117 |
+
repetition_count = 0
|
118 |
+
previous_token = None
|
119 |
+
|
120 |
+
for token in tokens:
|
121 |
+
reduced_token = re.sub(r"(\w{1,3})(\1{2,})", "", token)
|
122 |
+
|
123 |
+
if reduced_token == previous_token:
|
124 |
+
repetition_count += 1
|
125 |
+
if repetition_count <= max_repeats:
|
126 |
+
cleaned_tokens.append(reduced_token)
|
127 |
+
else:
|
128 |
+
repetition_count = 1
|
129 |
+
cleaned_tokens.append(reduced_token)
|
130 |
+
|
131 |
+
previous_token = reduced_token
|
132 |
+
|
133 |
+
cleaned_transcription = " ".join(cleaned_tokens)
|
134 |
+
cleaned_transcription = re.sub(r'\s+', ' ', cleaned_transcription).strip()
|
135 |
+
|
136 |
+
return cleaned_transcription
|
137 |
+
|
138 |
+
|
139 |
+
def post_merge_consecutive_segments_from_text(transcription_text: str) -> str:
|
140 |
+
segments = re.split(r'(\[SPEAKER_\d{2}\])', transcription_text)
|
141 |
+
merged_transcription = ''
|
142 |
+
current_speaker = None
|
143 |
+
current_segment = []
|
144 |
+
|
145 |
+
for i in range(1, len(segments) - 1, 2):
|
146 |
+
speaker_tag = segments[i]
|
147 |
+
text = segments[i + 1].strip()
|
148 |
+
|
149 |
+
speaker = re.search(r'\d{2}', speaker_tag).group()
|
150 |
+
|
151 |
+
if speaker == current_speaker:
|
152 |
+
current_segment.append(text)
|
153 |
+
else:
|
154 |
+
if current_speaker is not None:
|
155 |
+
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
|
156 |
+
current_speaker = speaker
|
157 |
+
current_segment = [text]
|
158 |
+
|
159 |
+
if current_speaker is not None:
|
160 |
+
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
|
161 |
+
|
162 |
+
return merged_transcription.strip()
|
163 |
+
|
164 |
+
def cleanup_temp_files(*file_paths):
|
165 |
+
for path in file_paths:
|
166 |
+
if path and os.path.exists(path):
|
167 |
+
os.remove(path)
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
def load_whisper_model(model_path: str):
|
172 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
173 |
+
model = whisper_ts.load_model(model_path, device=device)
|
174 |
+
return model
|
175 |
+
|
176 |
+
def transcribe_audio(model, audio_path: str) -> Dict:
|
177 |
+
try:
|
178 |
+
result = whisper_ts.transcribe(
|
179 |
+
model,
|
180 |
+
audio_path,
|
181 |
+
beam_size=5,
|
182 |
+
best_of=5,
|
183 |
+
temperature=(0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
184 |
+
vad=False,
|
185 |
+
detect_disfluencies=True,
|
186 |
+
)
|
187 |
+
|
188 |
+
words = []
|
189 |
+
for segment in result.get('segments', []):
|
190 |
+
for word in segment.get('words', []):
|
191 |
+
word_text = word.get('word', '').strip()
|
192 |
+
if word_text.startswith(' '):
|
193 |
+
word_text = word_text[1:]
|
194 |
+
|
195 |
+
words.append({
|
196 |
+
'word': word_text,
|
197 |
+
'start': word.get('start', 0),
|
198 |
+
'end': word.get('end', 0),
|
199 |
+
'confidence': word.get('confidence', 0)
|
200 |
+
})
|
201 |
+
|
202 |
+
return {
|
203 |
+
'audio_path': audio_path,
|
204 |
+
'text': result['text'].strip(),
|
205 |
+
'segments': result.get('segments', []),
|
206 |
+
'words': words,
|
207 |
+
'duration': result.get('duration', 0),
|
208 |
+
'success': True
|
209 |
+
}
|
210 |
+
|
211 |
+
except Exception as e:
|
212 |
+
return {
|
213 |
+
'audio_path': audio_path,
|
214 |
+
'error': str(e),
|
215 |
+
'success': False
|
216 |
+
}
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
diarization_pipeline = DiarizationPipeline.from_pretrained("./pyannote/config.yaml")
|
221 |
+
align_model, metadata = whisperx.load_align_model(language_code="en", device=DEVICE)
|
222 |
+
|
223 |
+
asr_pipe = pipeline(
|
224 |
+
task="automatic-speech-recognition",
|
225 |
+
model=MODEL_PATH_1,
|
226 |
+
chunk_length_s=30,
|
227 |
+
device=DEVICE,
|
228 |
+
return_timestamps=True)
|
229 |
+
|
230 |
+
def diarization(audio_path):
|
231 |
+
diarization_result = diarization_pipeline(audio_path)
|
232 |
+
diarized_segments = list(diarization_result.itertracks(yield_label=True))
|
233 |
+
print('diarized_segments',diarized_segments)
|
234 |
+
return diarized_segments
|
235 |
+
|
236 |
+
def asr(audio_path):
|
237 |
+
print(f"[DEBUG] Starting ASR on audio: {audio_path}")
|
238 |
+
asr_result = asr_pipe(audio_path, return_timestamps=True)
|
239 |
+
print(f"[DEBUG] Raw ASR result: {asr_result}")
|
240 |
+
asr_segments = hf_chunks_to_whisperx_segments(asr_result['chunks'])
|
241 |
+
asr_segments = assign_timestamps(asr_segments, audio_path)
|
242 |
+
return asr_segments
|
243 |
+
|
244 |
+
def align_asr_to_diarization(asr_segments, diarized_segments, audio_path):
|
245 |
+
waveform, sample_rate = format_audio(audio_path)
|
246 |
+
|
247 |
+
word_segments = whisperx.align(asr_segments, align_model, metadata, waveform, DEVICE)
|
248 |
+
words = word_segments['word_segments']
|
249 |
+
|
250 |
+
diarized = [{"start": segment.start,"end": segment.end,"speaker": speaker} for segment, _, speaker in diarized_segments]
|
251 |
+
|
252 |
+
aligned_pairs = align_words_to_segments(words, diarized)
|
253 |
+
|
254 |
+
output = []
|
255 |
+
segment_map = {}
|
256 |
+
for word, segment in aligned_pairs:
|
257 |
+
key = (segment["start"], segment["end"], segment["speaker"])
|
258 |
+
if key not in segment_map:
|
259 |
+
segment_map[key] = []
|
260 |
+
segment_map[key].append(word["word"])
|
261 |
+
|
262 |
+
for (start, end, speaker), words in sorted(segment_map.items()):
|
263 |
+
output.append(f"[{speaker}] {' '.join(words)}")
|
264 |
+
|
265 |
+
return output
|
266 |
+
|
267 |
+
def generate(audio_path, use_v2):
|
268 |
+
|
269 |
+
if use_v2:
|
270 |
+
model = load_whisper_model(MODEL_PATH_2)
|
271 |
+
split_stereo_channels(audio_path)
|
272 |
+
|
273 |
+
left_channel_path = "temp_mono_speaker2.wav"
|
274 |
+
right_channel_path = "temp_mono_speaker1.wav"
|
275 |
+
|
276 |
+
left_waveform, left_sr = format_audio(left_channel_path)
|
277 |
+
right_waveform, right_sr = format_audio(right_channel_path)
|
278 |
+
left_result = transcribe_audio(model, left_waveform)
|
279 |
+
right_result = transcribe_audio(model, right_waveform)
|
280 |
+
|
281 |
+
def get_segments(result, speaker_label):
|
282 |
+
segments = result.get("segments", [])
|
283 |
+
if not segments:
|
284 |
+
return []
|
285 |
+
return [
|
286 |
+
(seg.get("start", 0.0), seg.get("end", 0.0), speaker_label, post_process_transcription(seg.get("text", "").strip()))
|
287 |
+
for seg in segments if seg.get("text")
|
288 |
+
]
|
289 |
+
|
290 |
+
left_segs = get_segments(left_result, "Speaker 1")
|
291 |
+
right_segs = get_segments(right_result, "Speaker 2")
|
292 |
+
|
293 |
+
merged_transcript = sorted(
|
294 |
+
left_segs + right_segs,
|
295 |
+
key=lambda x: float(x[0]) if x[0] is not None else float("inf")
|
296 |
+
)
|
297 |
+
|
298 |
+
output = ""
|
299 |
+
for start, end, speaker, text in merged_transcript:
|
300 |
+
output += f"[{speaker}]: {text}\n"
|
301 |
+
|
302 |
+
clean_output = output.strip()
|
303 |
+
|
304 |
+
else:
|
305 |
+
mono_audio_path = convert_to_mono(audio_path)
|
306 |
+
waveform, sr = format_audio(mono_audio_path)
|
307 |
+
tmp_full_path = "tmp_full.wav"
|
308 |
+
save_temp_audio(waveform, sr, tmp_full_path)
|
309 |
+
diarized_segments = diarization(tmp_full_path)
|
310 |
+
asr_segments = asr(tmp_full_path)
|
311 |
+
for segment in asr_segments:
|
312 |
+
segment["text"] = post_process_transcription(segment["text"])
|
313 |
+
aligned_text = align_asr_to_diarization(asr_segments, diarized_segments, tmp_full_path)
|
314 |
+
|
315 |
+
clean_output = ""
|
316 |
+
for line in aligned_text:
|
317 |
+
clean_output += f"{line}\n"
|
318 |
+
clean_output = post_merge_consecutive_segments_from_text(clean_output)
|
319 |
+
cleanup_temp_files(mono_audio_path,tmp_full_path)
|
320 |
+
|
321 |
+
cleanup_temp_files(
|
322 |
+
"temp_mono_speaker1.wav",
|
323 |
+
"temp_mono_speaker2.wav"
|
324 |
+
)
|
325 |
+
|
326 |
+
return clean_output
|