Spaces:
Running
on
Zero
Running
on
Zero
Update clip_slider_pipeline.py
Browse files- clip_slider_pipeline.py +120 -39
clip_slider_pipeline.py
CHANGED
|
@@ -4,6 +4,66 @@ import random
|
|
| 4 |
from tqdm import tqdm
|
| 5 |
from constants import SUBJECTS, MEDIUMS
|
| 6 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
class CLIPSlider:
|
| 9 |
def __init__(
|
|
@@ -49,9 +109,9 @@ class CLIPSlider:
|
|
| 49 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
| 50 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
| 51 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 52 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
| 53 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 54 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
| 55 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
| 56 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
| 57 |
positives.append(pos)
|
|
@@ -81,7 +141,7 @@ class CLIPSlider:
|
|
| 81 |
|
| 82 |
with torch.no_grad():
|
| 83 |
toks = self.pipe.tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 84 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
| 85 |
prompt_embeds = self.pipe.text_encoder(toks).last_hidden_state
|
| 86 |
|
| 87 |
if self.avg_diff_2nd and normalize_scales:
|
|
@@ -163,18 +223,18 @@ class CLIPSliderXL(CLIPSlider):
|
|
| 163 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
| 164 |
|
| 165 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 166 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
| 167 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 168 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
| 169 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
| 170 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
| 171 |
positives.append(pos)
|
| 172 |
negatives.append(neg)
|
| 173 |
|
| 174 |
pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 175 |
-
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.
|
| 176 |
neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 177 |
-
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.
|
| 178 |
pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
|
| 179 |
neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
|
| 180 |
positives2.append(pos2)
|
|
@@ -207,7 +267,7 @@ class CLIPSliderXL(CLIPSlider):
|
|
| 207 |
text_encoders = [self.pipe.text_encoder, self.pipe.text_encoder_2]
|
| 208 |
tokenizers = [self.pipe.tokenizer, self.pipe.tokenizer_2]
|
| 209 |
with torch.no_grad():
|
| 210 |
-
# toks = pipe.tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True, max_length=77).input_ids.
|
| 211 |
# prompt_embeds = pipe.text_encoder(toks).last_hidden_state
|
| 212 |
|
| 213 |
prompt_embeds_list = []
|
|
@@ -300,18 +360,18 @@ class CLIPSliderXL_inv(CLIPSlider):
|
|
| 300 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
| 301 |
|
| 302 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 303 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
| 304 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 305 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
| 306 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
| 307 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
| 308 |
positives.append(pos)
|
| 309 |
negatives.append(neg)
|
| 310 |
|
| 311 |
pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 312 |
-
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.
|
| 313 |
neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 314 |
-
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.
|
| 315 |
pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
|
| 316 |
neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
|
| 317 |
positives2.append(pos2)
|
|
@@ -377,14 +437,14 @@ class CLIPSliderFlux(CLIPSlider):
|
|
| 377 |
truncation=True,
|
| 378 |
return_overflowing_tokens=False,
|
| 379 |
return_length=False,
|
| 380 |
-
return_tensors="pt",).input_ids.
|
| 381 |
neg_toks = self.pipe.tokenizer(neg_prompt,
|
| 382 |
padding="max_length",
|
| 383 |
max_length=self.pipe.tokenizer_max_length,
|
| 384 |
truncation=True,
|
| 385 |
return_overflowing_tokens=False,
|
| 386 |
return_length=False,
|
| 387 |
-
return_tensors="pt",).input_ids.
|
| 388 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
| 389 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
| 390 |
positives.append(pos)
|
|
@@ -400,17 +460,22 @@ class CLIPSliderFlux(CLIPSlider):
|
|
| 400 |
|
| 401 |
def generate(self,
|
| 402 |
prompt = "a photo of a house",
|
| 403 |
-
scale = 2,
|
| 404 |
-
scale_2nd = 2,
|
| 405 |
seed = 15,
|
| 406 |
normalize_scales = False,
|
| 407 |
avg_diff = None,
|
| 408 |
-
avg_diff_2nd = None,
|
|
|
|
|
|
|
| 409 |
**pipeline_kwargs
|
| 410 |
):
|
| 411 |
# if doing full sequence, [-0.3,0.3] work well, higher if correlation weighted is true
|
| 412 |
# if pooler token only [-4,4] work well
|
| 413 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 414 |
with torch.no_grad():
|
| 415 |
text_inputs = self.pipe.tokenizer(
|
| 416 |
prompt,
|
|
@@ -423,15 +488,11 @@ class CLIPSliderFlux(CLIPSlider):
|
|
| 423 |
)
|
| 424 |
|
| 425 |
text_input_ids = text_inputs.input_ids
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
# Use pooled output of CLIPTextModel
|
| 433 |
-
|
| 434 |
-
text_inputs = self.pipe.tokenizer_2(
|
| 435 |
prompt,
|
| 436 |
padding="max_length",
|
| 437 |
max_length=512,
|
|
@@ -440,21 +501,40 @@ class CLIPSliderFlux(CLIPSlider):
|
|
| 440 |
return_overflowing_tokens=False,
|
| 441 |
return_tensors="pt",
|
| 442 |
)
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 451 |
|
| 452 |
-
pooled_prompt_embeds = pooled_prompt_embeds + avg_diff * scale
|
| 453 |
if avg_diff_2nd is not None:
|
| 454 |
-
|
|
|
|
| 455 |
|
| 456 |
torch.manual_seed(seed)
|
| 457 |
-
images = self.pipe(prompt_embeds=
|
|
|
|
| 458 |
**pipeline_kwargs).images
|
| 459 |
|
| 460 |
return images[0]
|
|
@@ -483,6 +563,7 @@ class CLIPSliderFlux(CLIPSlider):
|
|
| 483 |
canvas.paste(im, (640 * i, 0))
|
| 484 |
|
| 485 |
return canvas
|
|
|
|
| 486 |
class T5SliderFlux(CLIPSlider):
|
| 487 |
|
| 488 |
def find_latent_direction(self,
|
|
@@ -509,14 +590,14 @@ class T5SliderFlux(CLIPSlider):
|
|
| 509 |
truncation=True,
|
| 510 |
return_length=False,
|
| 511 |
return_overflowing_tokens=False,
|
| 512 |
-
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.
|
| 513 |
neg_toks = self.pipe.tokenizer_2(neg_prompt,
|
| 514 |
return_tensors="pt",
|
| 515 |
padding="max_length",
|
| 516 |
truncation=True,
|
| 517 |
return_length=False,
|
| 518 |
return_overflowing_tokens=False,
|
| 519 |
-
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.
|
| 520 |
pos = self.pipe.text_encoder_2(pos_toks, output_hidden_states=False)[0]
|
| 521 |
neg = self.pipe.text_encoder_2(neg_toks, output_hidden_states=False)[0]
|
| 522 |
positives.append(pos)
|
|
|
|
| 4 |
from tqdm import tqdm
|
| 5 |
from constants import SUBJECTS, MEDIUMS
|
| 6 |
from PIL import Image
|
| 7 |
+
import math # For acos, sin
|
| 8 |
+
|
| 9 |
+
# Slerp (Spherical Linear Interpolation) function
|
| 10 |
+
def slerp(v0, v1, t, DOT_THRESHOLD=0.9995):
|
| 11 |
+
"""
|
| 12 |
+
Spherical linear interpolation.
|
| 13 |
+
v0, v1: Tensors to interpolate between.
|
| 14 |
+
t: Interpolation factor (scalar or tensor).
|
| 15 |
+
DOT_THRESHOLD: Threshold for considering vectors collinear.
|
| 16 |
+
"""
|
| 17 |
+
if not isinstance(t, torch.Tensor):
|
| 18 |
+
t = torch.tensor(t, device=v0.device, dtype=v0.dtype)
|
| 19 |
+
|
| 20 |
+
# Dot product
|
| 21 |
+
dot = torch.sum(v0 * v1 / (torch.norm(v0, dim=-1, keepdim=True) * torch.norm(v1, dim=-1, keepdim=True) + 1e-8), dim=-1, keepdim=True)
|
| 22 |
+
|
| 23 |
+
# If vectors are too close, use linear interpolation (LERP)
|
| 24 |
+
# This also handles t=0 and t=1 correctly if dot is 1.
|
| 25 |
+
# Also, if dot is -1 (opposite), omega is pi.
|
| 26 |
+
if torch.any(torch.abs(dot) > DOT_THRESHOLD):
|
| 27 |
+
# For Slerp, if they are too close, omega is small, sin(omega) is small.
|
| 28 |
+
# Fallback to LERP for stability and when vectors are nearly collinear.
|
| 29 |
+
# However, the general Slerp formula handles this if dot is clamped.
|
| 30 |
+
# Let's use the standard formula but ensure stability.
|
| 31 |
+
pass # Continue to Slerp formula with clamping
|
| 32 |
+
|
| 33 |
+
# Clamp dot to prevent NaN from acos due to floating point errors.
|
| 34 |
+
dot = torch.clamp(dot, -1.0, 1.0)
|
| 35 |
+
omega = torch.acos(dot) # Angle between vectors
|
| 36 |
+
|
| 37 |
+
# Get magnitudes for later linear interpolation of magnitude
|
| 38 |
+
mag_v0 = torch.norm(v0, dim=-1, keepdim=True)
|
| 39 |
+
mag_v1 = torch.norm(v1, dim=-1, keepdim=True)
|
| 40 |
+
|
| 41 |
+
interpolated_mag = (1 - t) * mag_v0 + t * mag_v1
|
| 42 |
+
|
| 43 |
+
# Normalize v0 and v1 for pure Slerp on direction
|
| 44 |
+
v0_norm = v0 / (mag_v0 + 1e-8)
|
| 45 |
+
v1_norm = v1 / (mag_v1 + 1e-8)
|
| 46 |
+
|
| 47 |
+
# If sin_omega is very small, vectors are nearly collinear.
|
| 48 |
+
# LERP on normalized vectors is a good approximation.
|
| 49 |
+
# Then re-apply interpolated magnitude.
|
| 50 |
+
sin_omega = torch.sin(omega)
|
| 51 |
+
|
| 52 |
+
# Condition for LERP fallback (nearly collinear)
|
| 53 |
+
# Using a small epsilon for sin_omega
|
| 54 |
+
use_lerp_fallback = sin_omega.abs() < 1e-5
|
| 55 |
+
|
| 56 |
+
s0 = torch.sin((1 - t) * omega) / (sin_omega + 1e-8) # Add epsilon to sin_omega for stability
|
| 57 |
+
s1 = torch.sin(t * omega) / (sin_omega + 1e-8) # Add epsilon to sin_omega for stability
|
| 58 |
+
|
| 59 |
+
# For elements where LERP fallback is needed
|
| 60 |
+
s0[use_lerp_fallback] = 1.0 - t
|
| 61 |
+
s1[use_lerp_fallback] = t
|
| 62 |
+
|
| 63 |
+
result_norm = s0 * v0_norm + s1 * v1_norm
|
| 64 |
+
result = result_norm * interpolated_mag # Re-apply interpolated magnitude
|
| 65 |
+
|
| 66 |
+
return result.to(v0.dtype)
|
| 67 |
|
| 68 |
class CLIPSlider:
|
| 69 |
def __init__(
|
|
|
|
| 109 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
| 110 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
| 111 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 112 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.to(self.device)
|
| 113 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 114 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.to(self.device)
|
| 115 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
| 116 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
| 117 |
positives.append(pos)
|
|
|
|
| 141 |
|
| 142 |
with torch.no_grad():
|
| 143 |
toks = self.pipe.tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 144 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.to(self.device)
|
| 145 |
prompt_embeds = self.pipe.text_encoder(toks).last_hidden_state
|
| 146 |
|
| 147 |
if self.avg_diff_2nd and normalize_scales:
|
|
|
|
| 223 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
| 224 |
|
| 225 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 226 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.to(self.device)
|
| 227 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 228 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.to(self.device)
|
| 229 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
| 230 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
| 231 |
positives.append(pos)
|
| 232 |
negatives.append(neg)
|
| 233 |
|
| 234 |
pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 235 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.to(self.device)
|
| 236 |
neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 237 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.to(self.device)
|
| 238 |
pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
|
| 239 |
neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
|
| 240 |
positives2.append(pos2)
|
|
|
|
| 267 |
text_encoders = [self.pipe.text_encoder, self.pipe.text_encoder_2]
|
| 268 |
tokenizers = [self.pipe.tokenizer, self.pipe.tokenizer_2]
|
| 269 |
with torch.no_grad():
|
| 270 |
+
# toks = pipe.tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True, max_length=77).input_ids.to(self.device)
|
| 271 |
# prompt_embeds = pipe.text_encoder(toks).last_hidden_state
|
| 272 |
|
| 273 |
prompt_embeds_list = []
|
|
|
|
| 360 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
| 361 |
|
| 362 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 363 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.to(self.device)
|
| 364 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 365 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.to(self.device)
|
| 366 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
| 367 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
| 368 |
positives.append(pos)
|
| 369 |
negatives.append(neg)
|
| 370 |
|
| 371 |
pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 372 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.to(self.device)
|
| 373 |
neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 374 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.to(self.device)
|
| 375 |
pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
|
| 376 |
neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
|
| 377 |
positives2.append(pos2)
|
|
|
|
| 437 |
truncation=True,
|
| 438 |
return_overflowing_tokens=False,
|
| 439 |
return_length=False,
|
| 440 |
+
return_tensors="pt",).input_ids.to(self.device)
|
| 441 |
neg_toks = self.pipe.tokenizer(neg_prompt,
|
| 442 |
padding="max_length",
|
| 443 |
max_length=self.pipe.tokenizer_max_length,
|
| 444 |
truncation=True,
|
| 445 |
return_overflowing_tokens=False,
|
| 446 |
return_length=False,
|
| 447 |
+
return_tensors="pt",).input_ids.to(self.device)
|
| 448 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
| 449 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
| 450 |
positives.append(pos)
|
|
|
|
| 460 |
|
| 461 |
def generate(self,
|
| 462 |
prompt = "a photo of a house",
|
| 463 |
+
scale = 2.0,
|
|
|
|
| 464 |
seed = 15,
|
| 465 |
normalize_scales = False,
|
| 466 |
avg_diff = None,
|
| 467 |
+
avg_diff_2nd = None,
|
| 468 |
+
use_slerp: bool = False,
|
| 469 |
+
max_strength_for_slerp_endpoint: float = 0.0,
|
| 470 |
**pipeline_kwargs
|
| 471 |
):
|
| 472 |
# if doing full sequence, [-0.3,0.3] work well, higher if correlation weighted is true
|
| 473 |
# if pooler token only [-4,4] work well
|
| 474 |
|
| 475 |
+
# Remove slider-specific kwargs before passing to the pipeline
|
| 476 |
+
pipeline_kwargs.pop('use_slerp', None)
|
| 477 |
+
pipeline_kwargs.pop('max_strength_for_slerp_endpoint', None)
|
| 478 |
+
|
| 479 |
with torch.no_grad():
|
| 480 |
text_inputs = self.pipe.tokenizer(
|
| 481 |
prompt,
|
|
|
|
| 488 |
)
|
| 489 |
|
| 490 |
text_input_ids = text_inputs.input_ids
|
| 491 |
+
prompt_embeds_out = self.pipe.text_encoder(text_input_ids.to(self.device), output_hidden_states=False)
|
| 492 |
+
original_pooled_prompt_embeds = prompt_embeds_out.pooler_output.to(dtype=self.pipe.text_encoder.dtype, device=self.device)
|
| 493 |
+
|
| 494 |
+
# For the second text encoder (T5-like for FLUX)
|
| 495 |
+
text_inputs_2 = self.pipe.tokenizer_2(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 496 |
prompt,
|
| 497 |
padding="max_length",
|
| 498 |
max_length=512,
|
|
|
|
| 501 |
return_overflowing_tokens=False,
|
| 502 |
return_tensors="pt",
|
| 503 |
)
|
| 504 |
+
toks_2 = text_inputs_2.input_ids
|
| 505 |
+
# This is the non-pooled, sequence output for the second encoder
|
| 506 |
+
prompt_embeds_seq_2 = self.pipe.text_encoder_2(toks_2.to(self.device), output_hidden_states=False)[0]
|
| 507 |
+
prompt_embeds_seq_2 = prompt_embeds_seq_2.to(dtype=self.pipe.text_encoder_2.dtype, device=self.device)
|
| 508 |
+
|
| 509 |
+
modified_pooled_embeds = original_pooled_prompt_embeds.clone()
|
| 510 |
+
|
| 511 |
+
if avg_diff is not None:
|
| 512 |
+
if use_slerp and max_strength_for_slerp_endpoint != 0.0:
|
| 513 |
+
# Slerp logic
|
| 514 |
+
slerp_t_val = 0.0
|
| 515 |
+
if max_strength_for_slerp_endpoint != 0:
|
| 516 |
+
slerp_t_val = abs(scale) / max_strength_for_slerp_endpoint
|
| 517 |
+
slerp_t_val = min(slerp_t_val, 1.0)
|
| 518 |
+
|
| 519 |
+
if scale == 0:
|
| 520 |
+
pass
|
| 521 |
+
else:
|
| 522 |
+
v0 = original_pooled_prompt_embeds.float()
|
| 523 |
+
if scale > 0:
|
| 524 |
+
v_end_target = original_pooled_prompt_embeds + max_strength_for_slerp_endpoint * avg_diff
|
| 525 |
+
else:
|
| 526 |
+
v_end_target = original_pooled_prompt_embeds - max_strength_for_slerp_endpoint * avg_diff
|
| 527 |
+
modified_pooled_embeds = slerp(v0, v_end_target.float(), slerp_t_val).to(original_pooled_prompt_embeds.dtype)
|
| 528 |
+
else:
|
| 529 |
+
modified_pooled_embeds = modified_pooled_embeds + avg_diff * scale
|
| 530 |
|
|
|
|
| 531 |
if avg_diff_2nd is not None:
|
| 532 |
+
scale_2nd_val = pipeline_kwargs.get("scale_2nd", 0.0)
|
| 533 |
+
modified_pooled_embeds += avg_diff_2nd * scale_2nd_val
|
| 534 |
|
| 535 |
torch.manual_seed(seed)
|
| 536 |
+
images = self.pipe(prompt_embeds=prompt_embeds_seq_2,
|
| 537 |
+
pooled_prompt_embeds=modified_pooled_embeds,
|
| 538 |
**pipeline_kwargs).images
|
| 539 |
|
| 540 |
return images[0]
|
|
|
|
| 563 |
canvas.paste(im, (640 * i, 0))
|
| 564 |
|
| 565 |
return canvas
|
| 566 |
+
|
| 567 |
class T5SliderFlux(CLIPSlider):
|
| 568 |
|
| 569 |
def find_latent_direction(self,
|
|
|
|
| 590 |
truncation=True,
|
| 591 |
return_length=False,
|
| 592 |
return_overflowing_tokens=False,
|
| 593 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.to(self.device)
|
| 594 |
neg_toks = self.pipe.tokenizer_2(neg_prompt,
|
| 595 |
return_tensors="pt",
|
| 596 |
padding="max_length",
|
| 597 |
truncation=True,
|
| 598 |
return_length=False,
|
| 599 |
return_overflowing_tokens=False,
|
| 600 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.to(self.device)
|
| 601 |
pos = self.pipe.text_encoder_2(pos_toks, output_hidden_states=False)[0]
|
| 602 |
neg = self.pipe.text_encoder_2(neg_toks, output_hidden_states=False)[0]
|
| 603 |
positives.append(pos)
|