--- title: sentiment-analysis app_file: app.py sdk: gradio sdk_version: 5.25.0 --- # 🎯 Análise de Sentimento em Avaliações de Produtos Este sistema analisa o sentimento em avaliações de produtos em português usando o modelo BERT com fine-tuning em dados do e-commerce brasileiro. ## 🤖 Modelo Utiliza o modelo [BERT fine-tuned para análise de sentimentos](https://huggingface.co/layers2024/bert-sentiment), treinado com o dataset [Olist Store](https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce/data), um conjunto público de mais de 100 mil avaliações de e-commerce brasileiro feitas entre 2016 e 2018. ## 🎯 Projeto Desenvolvido como parte do projeto NLP-Sentinel por [Luciano Ayres](https://linkedin.com/in/lucianoayres). ## 💻 Instalação Local ### Pré-requisitos - Python 3.10+ - Git (opcional) ### Instalação 1. Clone o repositório: ```bash git clone git@github.com:lucianoayres/sentiment-analysis-app.git cd sentiment-analysis-app ``` 2. Execute o script de instalação e inicialização: ```bash ./run.sh ``` O script irá: - Criar um ambiente virtual Python - Instalar as dependências necessárias - Iniciar a aplicação ## 🌐 Demo Online Você pode acessar uma versão online da aplicação em: [https://huggingface.co/spaces/layers2024/analise-de-sentimentos-avaliacao-de-produtos](https://huggingface.co/spaces/layers2024/analise-de-sentimentos-avaliacao-de-produtos) Gradio will: - Start a local server (usually accessible at [http://localhost:7860](http://localhost:7860)) - Print a shareable public URL (if `share=True` is set) so that you can try your app in your browser. ## Deploying Your Gradio App to Hugging Face Spaces Hugging Face Spaces provides a free and permanent hosting option for your Gradio demo. Follow the steps below to deploy your app using the terminal method: ### 1. Ensure You Have a Hugging Face Account Make sure you have a free Hugging Face account. If not, [create one here](https://huggingface.co/join). ### 2. Deploy via Terminal From your app's directory (where your `app.py` and `requirements.txt` reside), simply run: ```bash gradio deploy ``` This command will gather basic metadata from your project, automatically create a new Space for you, and deploy your Gradio app. - **To Update Your Space:** Re-run the `gradio deploy` command, or you can enable GitHub Actions to automatically update your Space on git push. ### 3. Access and Share Your App Once deployed, your app will be live at a URL in the following format: ``` https://-.hf.space ``` Share this URL with others to allow them to interact with your Gradio demo directly from their browsers. ## Additional Information - **Model Updates:** If you update your model on Hugging Face, the next time your app runs (locally or on Spaces), it will load the latest version. - **Hot Reload (Local Development):** Instead of running `python app.py`, you can run: ```bash gradio app.py ``` This enables hot reloading so your changes are automatically reflected in your demo. - **Troubleshooting:** - Ensure your virtual environment is activated before installing dependencies and running your script. - Verify that the package versions in your `requirements.txt` file are compatible with your code. - The initial launch might take extra time as your model files download from Hugging Face. For further details, please refer to the [Gradio Documentation](https://gradio.app/docs/) and the [Hugging Face Transformers Documentation](https://huggingface.co/docs/transformers). ======= # sentiment-analysis-app App de anális de sentimento em avaliações de produtos em português usando BERT com fine-tuning em dados do e-commerce brasileiro. >>>>>>> 42cb5fa7402ec14e53cdffc7568dcf02fc9750fe