Spaces:
Sleeping
Sleeping
File size: 9,264 Bytes
2dba380 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import streamlit as st
import open_clip
import torch
from PIL import Image
import numpy as np
from transformers import pipeline
import chromadb
import logging
# λ‘κΉ
μ€μ
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize session state
if 'image' not in st.session_state:
st.session_state.image = None
if 'detected_items' not in st.session_state:
st.session_state.detected_items = None
if 'selected_item_index' not in st.session_state:
st.session_state.selected_item_index = None
if 'upload_state' not in st.session_state:
st.session_state.upload_state = 'initial'
# Load models μλ
@st.cache_resource
def load_models():
try:
# CLIP λͺ¨λΈ
model, _, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
# μΈκ·Έλ©ν
μ΄μ
λͺ¨λΈ
segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
return model, preprocess_val, segmenter, device
except Exception as e:
logger.error(f"Error loading models: {e}")
raise
# λͺ¨λΈ λ‘λ
clip_model, preprocess_val, segmenter, device = load_models()
# ChromaDB μ€μ
client = chromadb.PersistentClient(path="./clothesDB_11GmarketMusinsa")
collection = client.get_collection(name="clothes")
def process_segmentation(image):
"""Segmentation processing μλ
νμΈμ"""
try:
segments = segmenter(image)
valid_items = []
for s in segments:
mask_array = np.array(s['mask'])
confidence = np.mean(mask_array)
valid_items.append({
'score': confidence,
'label': s['label'],
'mask': mask_array
})
return valid_items
except Exception as e:
logger.error(f"Segmentation error: {e}")
return []
def extract_features(image, mask=None):
"""Extract CLIP features"""
try:
if mask is not None:
img_array = np.array(image)
mask = np.expand_dims(mask, axis=2)
masked_img = img_array * mask
masked_img[mask[:,:,0] == 0] = 255
image = Image.fromarray(masked_img.astype(np.uint8))
image_tensor = preprocess_val(image).unsqueeze(0).to(device)
with torch.no_grad():
features = clip_model.encode_image(image_tensor)
features /= features.norm(dim=-1, keepdim=True)
return features.cpu().numpy().flatten()
except Exception as e:
logger.error(f"Feature extraction error: {e}")
raise
def search_similar_items(features, top_k=10):
"""Search similar items with distance scores"""
try:
results = collection.query(
query_embeddings=[features.tolist()],
n_results=top_k,
include=['metadatas', 'distances'] # distances ν¬ν¨
)
similar_items = []
for metadata, distance in zip(results['metadatas'][0], results['distances'][0]):
# 거리λ₯Ό μ μ¬λ μ μλ‘ λ³ν (0~1 λ²μ)
similarity_score = 1 / (1 + distance)
metadata['similarity_score'] = similarity_score # λ©νλ°μ΄ν°μ μ μ μΆκ°
similar_items.append(metadata)
return similar_items
except Exception as e:
logger.error(f"Search error: {e}")
return []
def show_similar_items(similar_items):
"""Display similar items in a structured format with similarity scores"""
st.subheader("Similar Items:")
for item in similar_items:
col1, col2 = st.columns([1, 2])
with col1:
st.image(item['image_url'])
with col2:
# μ μ¬λ μ μλ₯Ό νΌμΌνΈλ‘ νμ
similarity_percent = item['similarity_score'] * 100
st.write(f"Similarity: {similarity_percent:.1f}%")
st.write(f"Brand: {item.get('brand', 'Unknown')}")
st.write(f"Name: {item.get('name', 'Unknown')}")
st.write(f"Price: {item.get('price', 'Unknown'):,}μ")
if 'discount' in item:
st.write(f"Discount: {item['discount']}%")
if 'original_price' in item:
st.write(f"Original Price: {item['original_price']:,}μ")
# Initialize session state
if 'image' not in st.session_state:
st.session_state.image = None
if 'detected_items' not in st.session_state:
st.session_state.detected_items = None
if 'selected_item_index' not in st.session_state:
st.session_state.selected_item_index = None
if 'upload_state' not in st.session_state:
st.session_state.upload_state = 'initial'
if 'search_clicked' not in st.session_state:
st.session_state.search_clicked = False
def reset_state():
"""Reset all session state variables"""
for key in list(st.session_state.keys()):
del st.session_state[key]
# Callback functions
def handle_file_upload():
if st.session_state.uploaded_file is not None:
image = Image.open(st.session_state.uploaded_file).convert('RGB')
st.session_state.image = image
st.session_state.upload_state = 'image_uploaded'
st.rerun()
def handle_detection():
if st.session_state.image is not None:
detected_items = process_segmentation(st.session_state.image)
st.session_state.detected_items = detected_items
st.session_state.upload_state = 'items_detected'
st.rerun()
def handle_search():
st.session_state.search_clicked = True
def main():
st.title("ν¬μ΄λΈλ fashion demo!!!")
# νμΌ μ
λ‘λ (upload_stateκ° initialμΌ λλ§ νμ)
if st.session_state.upload_state == 'initial':
uploaded_file = st.file_uploader("Upload an image", type=['png', 'jpg', 'jpeg'],
key='uploaded_file', on_change=handle_file_upload)
# μ΄λ―Έμ§κ° μ
λ‘λλ μν df
if st.session_state.image is not None:
st.image(st.session_state.image, caption="Uploaded Image", use_column_width=True)
if st.session_state.detected_items is None:
if st.button("Detect Items", key='detect_button', on_click=handle_detection):
pass
# κ²μΆλ μμ΄ν
νμd
if st.session_state.detected_items:
# κ°μ§λ μμ΄ν
λ€dμ 2μ΄λ‘ νμ
cols = st.columns(2)
for idx, item in enumerate(st.session_state.detected_items):
with cols[idx % 2]:
mask = item['mask']
masked_img = np.array(st.session_state.image) * np.expand_dims(mask, axis=2)
st.image(masked_img.astype(np.uint8), caption=f"Detected {item['label']}")
st.write(f"Item {idx + 1}: {item['label']}")
st.write(f"Confidence: {item['score']*100:.1f}%")
# μμ΄ν
μ ν
selected_idx = st.selectbox(
"Select item to search:",
range(len(st.session_state.detected_items)),
format_func=lambda i: f"{st.session_state.detected_items[i]['label']}",
key='item_selector'
)
st.session_state.selected_item_index = selected_idx
# μ μ¬ μμ΄ν
κ²μ
col1, col2 = st.columns([1, 2])
with col1:
search_button = st.button("Search Similar Items",
key='search_button',
on_click=handle_search,
type="primary") # κ°μ‘°λ λ²νΌ
with col2:
num_results = st.slider("Number of results:",
min_value=1,
max_value=20,
value=5,
key='num_results')
if st.session_state.search_clicked:
with st.spinner("Searching similar items..."):
try:
selected_mask = st.session_state.detected_items[selected_idx]['mask']
features = extract_features(st.session_state.image, selected_mask)
similar_items = search_similar_items(features, top_k=num_results)
if similar_items:
show_similar_items(similar_items)
else:
st.warning("No similar items found.")
except Exception as e:
st.error(f"Error during search: {str(e)}")
# μ κ²μ λ²νΌ
if st.button("Start New Search ", key='new_search'):
reset_state()
st.rerun()
if __name__ == "__main__":
main() |