Spaces:
Runtime error
Runtime error
File size: 19,661 Bytes
104a4ce fd1a723 104a4ce fd1a723 ca267e1 104a4ce ca267e1 104a4ce 5db5b18 104a4ce fd1a723 104a4ce 83e8286 ca267e1 fd1a723 104a4ce fd1a723 104a4ce fd1a723 83e8286 104a4ce ca267e1 104a4ce 9f4bace 104a4ce ca267e1 104a4ce 9f4bace 104a4ce 9f4bace 104a4ce fd1a723 104a4ce 0b8ef86 104a4ce fd1a723 104a4ce 9f4bace fd1a723 5db5b18 fd1a723 c9bf28d fd1a723 104a4ce fd1a723 31639f7 fd1a723 104a4ce c9bf28d 9f4bace fd1a723 104a4ce fd1a723 a6c5938 fd1a723 a6c5938 fd1a723 a6c5938 10fbaa6 a3d216f a6c5938 fd1a723 a6c5938 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
import datetime
import os
import copy
from dataclasses import asdict, dataclass
from functools import lru_cache
from json import JSONDecodeError
from typing import Any, Dict, List, Optional, Union
from huggingface_hub.utils import GatedRepoError
import gradio as gr
from requests.exceptions import HTTPError
import requests
from diskcache import Cache
from huggingface_hub import (
HfApi,
hf_hub_url,
list_repo_commits,
logging,
model_info,
)
from tqdm.auto import tqdm
from tqdm.contrib.concurrent import thread_map
import backoff
from huggingface_hub.utils import EntryNotFoundError, disable_progress_bars
import httpx
import orjson
import httpx
from functools import lru_cache
from sys import platform
CACHE_DIR = "./cache" if platform == "darwin" else "/data/"
disable_progress_bars()
logging.set_verbosity_error()
token = os.getenv("HF_TOKEN")
cache = Cache(
CACHE_DIR, eviction_policy="least-frequently-used", size_limit=4e9
) # 4gb in bytes
def get_model_labels(model):
try:
url = hf_hub_url(repo_id=model, filename="config.json")
return list(requests.get(url).json()["label2id"].keys())
except (KeyError, JSONDecodeError, AttributeError):
return None
@dataclass
class EngagementStats:
likes: int
downloads: int
created_at: datetime.datetime
def _get_engagement_stats(hub_id):
api = HfApi(token=token)
repo = api.repo_info(hub_id)
return EngagementStats(
likes=repo.likes,
downloads=repo.downloads,
created_at=list_repo_commits(hub_id, repo_type="model")[-1].created_at,
)
def _try_load_model_card(hub_id):
try:
url = hf_hub_url(
repo_id=hub_id, filename="README.md"
) # We grab card this way rather than via client library to improve performance
card_text = httpx.get(url).text
length = len(card_text)
except EntryNotFoundError:
card_text = None
length = None
except (
GatedRepoError
): # TODO return different values to reflect gating rather than no card
card_text = None
length = None
return card_text, length
def _try_parse_card_data(hub_id):
data = {}
keys = ["license", "language", "datasets", "tags"]
for key in keys:
try:
value = model_info(hub_id, token=token).cardData[key]
data[key] = value
except (KeyError, AttributeError):
data[key] = None
return data
@dataclass
class ModelMetadata:
hub_id: str
tags: Optional[List[str]]
license: Optional[str]
library_name: Optional[str]
datasets: Optional[List[str]]
pipeline_tag: Optional[str]
labels: Optional[List[str]]
languages: Optional[Union[str, List[str]]]
engagement_stats: Optional[EngagementStats] = None
model_card_text: Optional[str] = None
model_card_length: Optional[int] = None
@classmethod
def from_hub(cls, hub_id):
try:
model = model_info(hub_id)
except (GatedRepoError, HTTPError):
return None # TODO catch gated repos and handle properly
card_text, length = _try_load_model_card(hub_id)
data = _try_parse_card_data(hub_id)
try:
library_name = model.library_name
except AttributeError:
library_name = None
try:
pipeline_tag = model.pipeline_tag
except AttributeError:
pipeline_tag = None
return ModelMetadata(
hub_id=hub_id,
languages=data["language"],
tags=data["tags"],
license=data["license"],
library_name=library_name,
datasets=data["datasets"],
pipeline_tag=pipeline_tag,
labels=get_model_labels(hub_id),
engagement_stats=_get_engagement_stats(hub_id),
model_card_text=card_text,
model_card_length=length,
)
COMMON_SCORES = {
"license": {
"required": True,
"score": 2,
"missing_recommendation": (
"You have not added a license to your models metadata"
),
},
"datasets": {
"required": False,
"score": 1,
"missing_recommendation": (
"You have not added any datasets to your models metadata"
),
},
"model_card_text": {
"required": True,
"score": 3,
"missing_recommendation": """You haven't created a model card for your model. It is strongly recommended to have a model card for your model. \nYou can create for your model by clicking [here](https://huggingface.co/HUB_ID/edit/main/README.md)""",
},
"tags": {
"required": False,
"score": 2,
"missing_recommendation": (
"You don't have any tags defined in your model metadata. Tags can help"
" people find relevant models on the Hub. You can create for your model by"
" clicking [here](https://huggingface.co/HUB_ID/edit/main/README.md)"
),
},
}
TASK_TYPES_WITH_LANGUAGES = {
"text-classification",
"token-classification",
"table-question-answering",
"question-answering",
"zero-shot-classification",
"translation",
"summarization",
"text-generation",
"text2text-generation",
"fill-mask",
"sentence-similarity",
"text-to-speech",
"automatic-speech-recognition",
"text-to-image",
"image-to-text",
"visual-question-answering",
"document-question-answering",
}
LABELS_REQUIRED_TASKS = {
"text-classification",
"token-classification",
"object-detection",
"audio-classification",
"image-classification",
"tabular-classification",
}
ALL_PIPELINES = {
"audio-classification",
"audio-to-audio",
"automatic-speech-recognition",
"conversational",
"depth-estimation",
"document-question-answering",
"feature-extraction",
"fill-mask",
"graph-ml",
"image-classification",
"image-segmentation",
"image-to-image",
"image-to-text",
"object-detection",
"question-answering",
"reinforcement-learning",
"robotics",
"sentence-similarity",
"summarization",
"table-question-answering",
"tabular-classification",
"tabular-regression",
"text-classification",
"text-generation",
"text-to-image",
"text-to-speech",
"text-to-video",
"text2text-generation",
"token-classification",
"translation",
"unconditional-image-generation",
"video-classification",
"visual-question-answering",
"voice-activity-detection",
"zero-shot-classification",
"zero-shot-image-classification",
}
@lru_cache(maxsize=None)
def generate_task_scores_dict():
task_scores = {}
for task in ALL_PIPELINES:
task_dict = copy.deepcopy(COMMON_SCORES)
if task in TASK_TYPES_WITH_LANGUAGES:
task_dict = {
**task_dict,
**{
"languages": {
"required": True,
"score": 2,
"missing_recommendation": (
"You haven't defined any languages in your metadata. This"
f" is usually recommend for {task} task"
),
}
},
}
if task in LABELS_REQUIRED_TASKS:
task_dict = {
**task_dict,
**{
"labels": {
"required": True,
"score": 2,
"missing_recommendation": (
"You haven't defined any labels in the config.json file"
f" these are usually recommended for {task}"
),
}
},
}
max_score = sum(value["score"] for value in task_dict.values())
task_dict["_max_score"] = max_score
task_scores[task] = task_dict
return task_scores
@lru_cache(maxsize=None)
def generate_common_scores():
GENERIC_SCORES = copy.deepcopy(COMMON_SCORES)
GENERIC_SCORES["_max_score"] = sum(
value["score"] for value in GENERIC_SCORES.values()
)
return GENERIC_SCORES
SCORES = generate_task_scores_dict()
GENERIC_SCORES = generate_common_scores()
@cache.memoize(expire=60 * 60 * 24 * 3) # expires after 3 days
def _basic_check(hub_id):
data = ModelMetadata.from_hub(hub_id)
score = 0
if data is None:
return None
to_fix = {}
if task := data.pipeline_tag:
task_scores = SCORES[task]
data_dict = asdict(data)
for k, v in task_scores.items():
if k.startswith("_"):
continue
if data_dict[k] is None:
to_fix[k] = task_scores[k]["missing_recommendation"].replace(
"HUB_ID", hub_id
)
if data_dict[k] is not None:
score += v["score"]
max_score = task_scores["_max_score"]
score = score / max_score
(
f"Your model's metadata score is {round(score*100)}% based on suggested"
f" metadata for {task}. \n"
)
if to_fix:
recommendations = (
"Here are some suggestions to improve your model's metadata for"
f" {task}: \n"
)
for v in to_fix.values():
recommendations += f"\n- {v}"
data_dict["recommendations"] = recommendations
data_dict["score"] = score * 100
else:
data_dict = asdict(data)
for k, v in GENERIC_SCORES.items():
if k.startswith("_"):
continue
if data_dict[k] is None:
to_fix[k] = GENERIC_SCORES[k]["missing_recommendation"].replace(
"HUB_ID", hub_id
)
if data_dict[k] is not None:
score += v["score"]
score = score / GENERIC_SCORES["_max_score"]
data_dict["score"] = max(
0, (score / 2) * 100
) # TODO currently setting a manual penalty for not having a task
return orjson.dumps(data_dict)
def basic_check(hub_id):
return _basic_check(hub_id)
def create_query_url(query, skip=0):
return f"https://huggingface.co/api/search/full-text?q={query}&limit=100&skip={skip}&type=model"
@cache.memoize(expire=60 * 60 * 24 * 3) # expires after 3 days
def get_results(query) -> Dict[Any, Any]:
url = create_query_url(query)
r = httpx.get(url)
return r.json()
# result = {
# "repoId": "621ffdc036468d709f175eb5",
# "repoOwnerId": "60d099234330bad169e611f0",
# "isPrivate": False,
# "type": "model",
# "likes": 0,
# "isReadmeFile": True,
# "readmeStartLine": 8,
# "updatedAt": 1687806057107,
# "repoName": "hate_speech_en",
# "repoOwner": "IMSyPP",
# "tags": "pytorch, bert, text-classification, en, transformers, license:mit, has_space",
# "name": "IMSyPP/hate_speech_en",
# "fileName": "README.md",
# "formatted": {
# "repoName": [{"text": "hate_speech_en", "type": "text"}],
# "repoOwner": [{"text": "IMSyPP", "type": "text"}],
# "fileContent": [
# {"text": "\n# ", "type": "text"},
# {"text": "Hate", "type": "highlight"},
# {"text": " ", "type": "text"},
# {"text": "Speech", "type": "highlight"},
# {
# "text": " Classifier for Social Media Content in English Language\n\nA monolingual model for ",
# "type": "text",
# },
# {"text": "hate", "type": "highlight"},
# {"text": " ", "type": "text"},
# {"text": "speech", "type": "highlight"},
# {
# "text": " classification of social media content in English language. The model was trained on 103190 YouTube comments and tested on an independent test set of 20554 YouTube comments. It is based on English BERT base pre-trained language model.\n\n## Tokenizer\n\nDuring training the text was preprocessed using the original English BERT base tokenizer. We suggest the same tokenizer is used for inference.\n\n## Model output\n\nThe model classifies each input into one of four distinct classes:\n* 0 - acceptable\n* 1 - inappropriate\n* 2 - offensive\n* 3 - violent",
# "type": "text",
# },
# ],
# "tags": [
# {
# "text": "pytorch, bert, text-classification, en, transformers, license:mit, has_space",
# "type": "text",
# }
# ],
# "name": [{"text": "IMSyPP/hate_speech_en", "type": "text"}],
# "fileName": [{"text": "README.md", "type": "text"}],
# },
# "authorData": {
# "avatarUrl": "https://aeiljuispo.cloudimg.io/v7/https://s3.amazonaws.com/moonup/production/uploads/1624284535629-60d08803565dd1d0867f7a37.png?w=200&h=200&f=face",
# "fullname": "IMSyPP EU REC AG project 875263 - Innovative Monitoring Systems and Prevention Policies of Online Hate Speech",
# "name": "IMSyPP",
# "type": "org",
# "isHf": False,
# },
# }
@backoff.on_exception(
backoff.expo,
Exception,
max_time=2,
raise_on_giveup=False,
)
def parse_single_result(result):
name, filename = result["name"], result["fileName"]
search_result_file_url = hf_hub_url(name, filename)
repo_hub_url = f"https://huggingface.co/{name}"
score = _basic_check(name)
if score is None:
return None
score = orjson.loads(score)
return {
"name": name,
"search_result_file_url": search_result_file_url,
"repo_hub_url": repo_hub_url,
"metadata_score": score["score"],
"model_card_length": score["model_card_length"],
"is_licensed": bool(score["license"]),
# "metadata_report": score
}
def filter_search_results(
results: List[Dict[Any, Any]], min_score=None, min_model_card_length=None
): # TODO make code more intuitive
results = thread_map(parse_single_result, results)
for i, parsed_result in tqdm(enumerate(results)):
# parsed_result = parse_single_result(result)
if parsed_result is None:
continue
if (
min_score is None
and min_model_card_length is not None
and parsed_result["model_card_length"] > min_model_card_length
or min_score is None
and min_model_card_length is None
):
yield parsed_result
elif min_score is not None:
if parsed_result["metadata_score"] <= min_score:
continue
if (
min_model_card_length is not None
and parsed_result["model_card_length"] > min_model_card_length
or min_model_card_length is None
):
parsed_result["original_position"] = i
yield parsed_result
def sort_search_results(filtered_search_results):
return sorted(
list(filtered_search_results),
key=lambda x: (x["metadata_score"], x["original_position"]),
reverse=True,
)
def find_context(text, query, window_size):
# Split the text into words
words = text.split()
# Find the index of the query token
try:
index = words.index(query)
# Get the start and end indices of the context window
start = max(0, index - window_size)
end = min(len(words), index + window_size + 1)
return " ".join(words[start:end])
except ValueError:
return " ".join(words[:window_size])
# single_result[
# "text"
# ] = "lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua."
# results = [single_result] * 3
def create_markdown(results):
rows = []
for result in results:
row = f"""# [{result['name']}]({result['repo_hub_url']})
| Metadata Quality Score | Model card length | Licensed |
|------------------------|-------------------|----------|
| {result['metadata_score']:.0f}% | {result['model_card_length']} | {"✅" if result['is_licensed'] else "❌"} |
\n
*{result['text']}*
<hr>
\n"""
rows.append(row)
return "\n".join(rows)
def get_result_card_snippet(result):
try:
result_text = httpx.get(result["search_result_file_url"]).text
result["text"] = find_context(result_text, query, 100)
except httpx.ConnectError:
result["text"] = "Could not load model card"
return result
def _search_hub(
query: str,
min_score: Optional[int] = None,
min_model_card_length: Optional[int] = None,
):
results = get_results(query)
print(f"Found {len(results['hits'])} results")
results = results["hits"]
number_original_results = len(results)
filtered_results = filter_search_results(
results, min_score=min_score, min_model_card_length=min_model_card_length
)
filtered_results = sort_search_results(filtered_results)
# final_results = []
# for result in filtered_results:
# result_text = httpx.get(result["search_result_file_url"]).text
# result["text"] = find_context(result_text, query, 100)
# final_results.append(result)
final_results = thread_map(get_result_card_snippet, filtered_results)
percent_of_original = round(
len(final_results) / number_original_results * 100, ndigits=0
)
filtered_vs_og = f"""
| Number of original results | Number of results after filtering | Percentage of results after filtering |
| -------------------------- | --------------------------------- | -------------------------------------------- |
| {number_original_results} | {len(final_results)} | {percent_of_original}% |
"""
print(final_results)
return filtered_vs_og, create_markdown(final_results)
def search_hub(query: str, min_score=None, min_model_card_length=None):
return _search_hub(query, min_score, min_model_card_length)
with gr.Blocks() as demo:
gr.Markdown("# 🤗 Hub model search with metadata quality filters")
with gr.Row():
with gr.Column():
query = gr.Textbox("x-ray", label="Search query")
with gr.Column():
button = gr.Button("Search")
with gr.Row():
# gr.Checkbox(False, label="Must have licence?")
mim_model_card_length = gr.Number(
None, label="Minimum model card length"
)
min_metadata_score = gr.Slider(0, label="Minimum metadata score")
filter_results = gr.Markdown("Filter results vs original search")
results_markdown = gr.Markdown("Search results")
button.click(
search_hub,
[query, min_metadata_score, mim_model_card_length],
[filter_results, results_markdown],
)
demo.queue(concurrency_count=32)
demo.launch()
# with gr.Blocks() as demo:
# gr.Markdown(
# """
# # Model Metadata Checker
# This app will check your model's metadata for a few common issues."""
# )
# with gr.Row():
# text = gr.Text(label="Model ID")
# button = gr.Button(label="Check", type="submit")
# with gr.Row():
# gr.Markdown("Results")
# markdown = gr.JSON()
# button.click(_basic_check, text, markdown)
# demo.queue(concurrency_count=32)
# demo.launch()
# gr.Interface(fn=basic_check, inputs="text", outputs="markdown").launch(debug=True)
|