import datetime import os import copy from dataclasses import asdict, dataclass from functools import lru_cache from json import JSONDecodeError from typing import Any, Dict, List, Optional, Union from huggingface_hub.utils import GatedRepoError import gradio as gr from requests.exceptions import HTTPError import requests from diskcache import Cache from huggingface_hub import ( HfApi, hf_hub_url, list_repo_commits, logging, model_info, ) from tqdm.auto import tqdm from tqdm.contrib.concurrent import thread_map import backoff from huggingface_hub.utils import EntryNotFoundError, disable_progress_bars import httpx import orjson import httpx from functools import lru_cache from sys import platform CACHE_DIR = "./cache" if platform == "darwin" else "/data/" disable_progress_bars() logging.set_verbosity_error() token = os.getenv("HF_TOKEN") cache = Cache( CACHE_DIR, eviction_policy="least-frequently-used", size_limit=4e9 ) # 4gb in bytes def get_model_labels(model): try: url = hf_hub_url(repo_id=model, filename="config.json") return list(requests.get(url).json()["label2id"].keys()) except (KeyError, JSONDecodeError, AttributeError): return None @dataclass class EngagementStats: likes: int downloads: int created_at: datetime.datetime def _get_engagement_stats(hub_id): api = HfApi(token=token) repo = api.repo_info(hub_id) return EngagementStats( likes=repo.likes, downloads=repo.downloads, created_at=list_repo_commits(hub_id, repo_type="model")[-1].created_at, ) def _try_load_model_card(hub_id): try: url = hf_hub_url( repo_id=hub_id, filename="README.md" ) # We grab card this way rather than via client library to improve performance card_text = httpx.get(url).text length = len(card_text) except EntryNotFoundError: card_text = None length = None except ( GatedRepoError ): # TODO return different values to reflect gating rather than no card card_text = None length = None return card_text, length def _try_parse_card_data(hub_id): data = {} keys = ["license", "language", "datasets", "tags"] for key in keys: try: value = model_info(hub_id, token=token).cardData[key] data[key] = value except (KeyError, AttributeError): data[key] = None return data @dataclass class ModelMetadata: hub_id: str tags: Optional[List[str]] license: Optional[str] library_name: Optional[str] datasets: Optional[List[str]] pipeline_tag: Optional[str] labels: Optional[List[str]] languages: Optional[Union[str, List[str]]] engagement_stats: Optional[EngagementStats] = None model_card_text: Optional[str] = None model_card_length: Optional[int] = None @classmethod def from_hub(cls, hub_id): try: model = model_info(hub_id) except (GatedRepoError, HTTPError): return None # TODO catch gated repos and handle properly card_text, length = _try_load_model_card(hub_id) data = _try_parse_card_data(hub_id) try: library_name = model.library_name except AttributeError: library_name = None try: pipeline_tag = model.pipeline_tag except AttributeError: pipeline_tag = None return ModelMetadata( hub_id=hub_id, languages=data["language"], tags=data["tags"], license=data["license"], library_name=library_name, datasets=data["datasets"], pipeline_tag=pipeline_tag, labels=get_model_labels(hub_id), engagement_stats=_get_engagement_stats(hub_id), model_card_text=card_text, model_card_length=length, ) COMMON_SCORES = { "license": { "required": True, "score": 2, "missing_recommendation": ( "You have not added a license to your models metadata" ), }, "datasets": { "required": False, "score": 1, "missing_recommendation": ( "You have not added any datasets to your models metadata" ), }, "model_card_text": { "required": True, "score": 3, "missing_recommendation": """You haven't created a model card for your model. It is strongly recommended to have a model card for your model. \nYou can create for your model by clicking [here](https://huggingface.co/HUB_ID/edit/main/README.md)""", }, "tags": { "required": False, "score": 2, "missing_recommendation": ( "You don't have any tags defined in your model metadata. Tags can help" " people find relevant models on the Hub. You can create for your model by" " clicking [here](https://huggingface.co/HUB_ID/edit/main/README.md)" ), }, } TASK_TYPES_WITH_LANGUAGES = { "text-classification", "token-classification", "table-question-answering", "question-answering", "zero-shot-classification", "translation", "summarization", "text-generation", "text2text-generation", "fill-mask", "sentence-similarity", "text-to-speech", "automatic-speech-recognition", "text-to-image", "image-to-text", "visual-question-answering", "document-question-answering", } LABELS_REQUIRED_TASKS = { "text-classification", "token-classification", "object-detection", "audio-classification", "image-classification", "tabular-classification", } ALL_PIPELINES = { "audio-classification", "audio-to-audio", "automatic-speech-recognition", "conversational", "depth-estimation", "document-question-answering", "feature-extraction", "fill-mask", "graph-ml", "image-classification", "image-segmentation", "image-to-image", "image-to-text", "object-detection", "question-answering", "reinforcement-learning", "robotics", "sentence-similarity", "summarization", "table-question-answering", "tabular-classification", "tabular-regression", "text-classification", "text-generation", "text-to-image", "text-to-speech", "text-to-video", "text2text-generation", "token-classification", "translation", "unconditional-image-generation", "video-classification", "visual-question-answering", "voice-activity-detection", "zero-shot-classification", "zero-shot-image-classification", } @lru_cache(maxsize=None) def generate_task_scores_dict(): task_scores = {} for task in ALL_PIPELINES: task_dict = copy.deepcopy(COMMON_SCORES) if task in TASK_TYPES_WITH_LANGUAGES: task_dict = { **task_dict, **{ "languages": { "required": True, "score": 2, "missing_recommendation": ( "You haven't defined any languages in your metadata. This" f" is usually recommend for {task} task" ), } }, } if task in LABELS_REQUIRED_TASKS: task_dict = { **task_dict, **{ "labels": { "required": True, "score": 2, "missing_recommendation": ( "You haven't defined any labels in the config.json file" f" these are usually recommended for {task}" ), } }, } max_score = sum(value["score"] for value in task_dict.values()) task_dict["_max_score"] = max_score task_scores[task] = task_dict return task_scores @lru_cache(maxsize=None) def generate_common_scores(): GENERIC_SCORES = copy.deepcopy(COMMON_SCORES) GENERIC_SCORES["_max_score"] = sum( value["score"] for value in GENERIC_SCORES.values() ) return GENERIC_SCORES SCORES = generate_task_scores_dict() GENERIC_SCORES = generate_common_scores() @cache.memoize(expire=60 * 60 * 24 * 3) # expires after 3 days def _basic_check(hub_id): data = ModelMetadata.from_hub(hub_id) score = 0 if data is None: return None to_fix = {} if task := data.pipeline_tag: task_scores = SCORES[task] data_dict = asdict(data) for k, v in task_scores.items(): if k.startswith("_"): continue if data_dict[k] is None: to_fix[k] = task_scores[k]["missing_recommendation"].replace( "HUB_ID", hub_id ) if data_dict[k] is not None: score += v["score"] max_score = task_scores["_max_score"] score = score / max_score ( f"Your model's metadata score is {round(score*100)}% based on suggested" f" metadata for {task}. \n" ) if to_fix: recommendations = ( "Here are some suggestions to improve your model's metadata for" f" {task}: \n" ) for v in to_fix.values(): recommendations += f"\n- {v}" data_dict["recommendations"] = recommendations data_dict["score"] = score * 100 else: data_dict = asdict(data) for k, v in GENERIC_SCORES.items(): if k.startswith("_"): continue if data_dict[k] is None: to_fix[k] = GENERIC_SCORES[k]["missing_recommendation"].replace( "HUB_ID", hub_id ) if data_dict[k] is not None: score += v["score"] score = score / GENERIC_SCORES["_max_score"] data_dict["score"] = max( 0, (score / 2) * 100 ) # TODO currently setting a manual penalty for not having a task return orjson.dumps(data_dict) def basic_check(hub_id): return _basic_check(hub_id) def create_query_url(query, skip=0): return f"https://huggingface.co/api/search/full-text?q={query}&limit=100&skip={skip}&type=model" @cache.memoize(expire=60 * 60 * 24 * 3) # expires after 3 days def get_results(query) -> Dict[Any, Any]: url = create_query_url(query) r = httpx.get(url) return r.json() # result = { # "repoId": "621ffdc036468d709f175eb5", # "repoOwnerId": "60d099234330bad169e611f0", # "isPrivate": False, # "type": "model", # "likes": 0, # "isReadmeFile": True, # "readmeStartLine": 8, # "updatedAt": 1687806057107, # "repoName": "hate_speech_en", # "repoOwner": "IMSyPP", # "tags": "pytorch, bert, text-classification, en, transformers, license:mit, has_space", # "name": "IMSyPP/hate_speech_en", # "fileName": "README.md", # "formatted": { # "repoName": [{"text": "hate_speech_en", "type": "text"}], # "repoOwner": [{"text": "IMSyPP", "type": "text"}], # "fileContent": [ # {"text": "\n# ", "type": "text"}, # {"text": "Hate", "type": "highlight"}, # {"text": " ", "type": "text"}, # {"text": "Speech", "type": "highlight"}, # { # "text": " Classifier for Social Media Content in English Language\n\nA monolingual model for ", # "type": "text", # }, # {"text": "hate", "type": "highlight"}, # {"text": " ", "type": "text"}, # {"text": "speech", "type": "highlight"}, # { # "text": " classification of social media content in English language. The model was trained on 103190 YouTube comments and tested on an independent test set of 20554 YouTube comments. It is based on English BERT base pre-trained language model.\n\n## Tokenizer\n\nDuring training the text was preprocessed using the original English BERT base tokenizer. We suggest the same tokenizer is used for inference.\n\n## Model output\n\nThe model classifies each input into one of four distinct classes:\n* 0 - acceptable\n* 1 - inappropriate\n* 2 - offensive\n* 3 - violent", # "type": "text", # }, # ], # "tags": [ # { # "text": "pytorch, bert, text-classification, en, transformers, license:mit, has_space", # "type": "text", # } # ], # "name": [{"text": "IMSyPP/hate_speech_en", "type": "text"}], # "fileName": [{"text": "README.md", "type": "text"}], # }, # "authorData": { # "avatarUrl": "https://aeiljuispo.cloudimg.io/v7/https://s3.amazonaws.com/moonup/production/uploads/1624284535629-60d08803565dd1d0867f7a37.png?w=200&h=200&f=face", # "fullname": "IMSyPP EU REC AG project 875263 - Innovative Monitoring Systems and Prevention Policies of Online Hate Speech", # "name": "IMSyPP", # "type": "org", # "isHf": False, # }, # } @backoff.on_exception( backoff.expo, Exception, max_time=2, raise_on_giveup=False, ) def parse_single_result(result): name, filename = result["name"], result["fileName"] search_result_file_url = hf_hub_url(name, filename) repo_hub_url = f"https://huggingface.co/{name}" score = _basic_check(name) if score is None: return None score = orjson.loads(score) return { "name": name, "search_result_file_url": search_result_file_url, "repo_hub_url": repo_hub_url, "metadata_score": score["score"], "model_card_length": score["model_card_length"], "is_licensed": bool(score["license"]), # "metadata_report": score } def filter_search_results( results: List[Dict[Any, Any]], min_score=None, min_model_card_length=None ): # TODO make code more intuitive results = thread_map(parse_single_result, results) for i, parsed_result in tqdm(enumerate(results)): # parsed_result = parse_single_result(result) if parsed_result is None: continue if ( min_score is None and min_model_card_length is not None and parsed_result["model_card_length"] > min_model_card_length or min_score is None and min_model_card_length is None ): yield parsed_result elif min_score is not None: if parsed_result["metadata_score"] <= min_score: continue if ( min_model_card_length is not None and parsed_result["model_card_length"] > min_model_card_length or min_model_card_length is None ): parsed_result["original_position"] = i yield parsed_result def sort_search_results(filtered_search_results): return sorted( list(filtered_search_results), key=lambda x: (x["metadata_score"], x["original_position"]), reverse=True, ) def find_context(text, query, window_size): # Split the text into words words = text.split() # Find the index of the query token try: index = words.index(query) # Get the start and end indices of the context window start = max(0, index - window_size) end = min(len(words), index + window_size + 1) return " ".join(words[start:end]) except ValueError: return " ".join(words[:window_size]) # single_result[ # "text" # ] = "lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua." # results = [single_result] * 3 def create_markdown(results): rows = [] for result in results: row = f"""# [{result['name']}]({result['repo_hub_url']}) | Metadata Quality Score | Model card length | Licensed | |------------------------|-------------------|----------| | {result['metadata_score']:.0f}% | {result['model_card_length']} | {"✅" if result['is_licensed'] else "❌"} | \n *{result['text']}*