Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
from tensorflow.keras.layers import Embedding, LSTM, Dense, Bidirectional | |
from tensorflow.keras.preprocessing.text import Tokenizer | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.optimizers import Adam | |
# Load the saved model | |
model = load_model('Final_model.h5') | |
data = pd.read_csv('Movie_Titles.csv') | |
data['movie_title'] = data['movie_title'].apply(lambda x: x.replace(u'\xa0',u' ')) | |
data['movie_title'] = data['movie_title'].apply(lambda x: x.replace('\u200a',' ')) | |
tokenizer = Tokenizer(oov_token='<oov>') # For those words which are not found in word_index | |
tokenizer.fit_on_texts(data['movie_title']) | |
total_words = len(tokenizer.word_index) + 1 | |
input_sequences = [] | |
for line in data['movie_title']: | |
token_list = tokenizer.texts_to_sequences([line])[0] | |
print(token_list) | |
for i in range(1, len(token_list)): | |
n_gram_sequence = token_list[:i+1] | |
input_sequences.append(n_gram_sequence) | |
# pad sequences | |
max_sequence_len = max([len(x) for x in input_sequences]) | |
input_sequences = np.array(pad_sequences(input_sequences, maxlen=max_sequence_len, padding='pre')) | |
def generate_text(seed_text, next_words): | |
for _ in range(next_words): | |
token_list = tokenizer.texts_to_sequences([seed_text])[0] | |
token_list = pad_sequences([token_list], maxlen=max_sequence_len-1, padding='pre') | |
predicted = np.argmax(model.predict(token_list), axis=-1) | |
output_word = "" | |
for word, index in tokenizer.word_index.items(): | |
if index == predicted: | |
output_word = word | |
break | |
seed_text += " " + output_word | |
return seed_text | |
with gr.Blocks() as demo: | |
gr.HTML("<h1><center>Next Word Prediction: Unveiling the Future, One Word at a Time</center></h1>") | |
txt = gr.Textbox(label="Your initial word", lines=1) | |
slider = gr.Slider(minimum=0, maximum=10, step=1, value=1, label="Number of words") | |
txt_3 = gr.Textbox(value="", label="Output") | |
btn = gr.Button(value="Submit") | |
btn.click(generate_text, inputs=[txt, slider], outputs=[txt_3]) | |
if __name__ == "__main__": | |
demo.launch(share=True) |