Spaces:
Sleeping
Sleeping
File size: 8,642 Bytes
5ffd361 e3a7b6f a17dc9a 5ffd361 a17dc9a e3a7b6f 5ffd361 e3a7b6f 5ffd361 e3a7b6f a17dc9a aec004b 854cd73 e3a7b6f 5ffd361 d6a8693 5ffd361 d6a8693 5ffd361 d6a8693 5ffd361 43c97db 5ffd361 d6a8693 e3a7b6f 5ffd361 e3a7b6f 5ffd361 e3a7b6f 5ffd361 95ed60f 5ffd361 e3a7b6f 5ffd361 e3a7b6f 5ffd361 e3a7b6f 5ffd361 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import os
import gc
import io
from llama_cpp import Llama
from concurrent.futures import ThreadPoolExecutor, as_completed
from fastapi import FastAPI, Request, HTTPException, Lifespan
from fastapi.responses import JSONResponse
from tqdm import tqdm
from dotenv import load_dotenv
from pydantic import BaseModel
from huggingface_hub import hf_hub_download, login
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import nltk
import uvicorn
import psutil
import torch
import tempfile
nltk.download('punkt')
nltk.download('stopwords')
load_dotenv()
app = FastAPI()
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
if HUGGINGFACE_TOKEN:
login(token=HUGGINGFACE_TOKEN)
model_configs = [
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-q2_k.gguf", "name": "Meta Llama 3.1-70B"},
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"},
{"repo_id": "Ffftdtd5dtft/Hermes-3-Llama-3.1-8B-IQ1_S-GGUF", "filename": "hermes-3-llama-3.1-8b-iq1_s-imat.gguf", "name": "Hermes 3 Llama 3.1-8B"},
{"repo_id": "Ffftdtd5dtft/Phi-3.5-mini-instruct-Q2_K-GGUF", "filename": "phi-3.5-mini-instruct-q2_k.gguf", "name": "Phi 3.5 Mini Instruct"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-70B Instruct"},
{"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"},
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "filename": "phi-3-mini-128k-instruct-iq2_xxs-imat.gguf", "name": "Phi 3 Mini 128K Instruct XXS"},
{"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf", "name": "TinyLlama 1.1B Chat"},
{"repo_id": "Ffftdtd5dtft/Mistral-NeMo-Minitron-8B-Base-IQ1_S-GGUF", "filename": "mistral-nemo-minitron-8b-base-iq1_s-imat.gguf", "name": "Mistral NeMo Minitron 8B Base"},
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"}
]
global_data = {'model_configs': model_configs, 'training_data': io.StringIO()}
class ModelManager:
def __init__(self):
self.models = {}
self.load_models()
def load_models(self):
for config in tqdm(global_data['model_configs'], desc="Loading models"):
model_name = config['name']
if model_name not in self.models:
try:
with tempfile.NamedTemporaryFile(suffix=".gguf", delete=False) as temp_file:
model_path = hf_hub_download(repo_id=config['repo_id'], filename=temp_file.name, use_auth_token=HUGGINGFACE_TOKEN)
model = Llama.from_file(model_path, n_ctx=512, n_gpu=1)
self.models[model_name] = model
print(f"Model '{model_name}' loaded successfully.")
os.remove(temp_file.name) #remove the temp file after loading
except Exception as e:
print(f"Error loading model {model_name}: {e}")
self.models[model_name] = None
finally:
gc.collect()
def get_model(self, model_name: str):
return self.models.get(model_name)
model_manager = ModelManager()
class ChatRequest(BaseModel):
message: str
async def generate_model_response(model, inputs: str) -> str:
try:
if model:
response = model(inputs, max_tokens=150)
return response['choices'][0]['text'].strip()
else:
return "Model not loaded"
except Exception as e:
return f"Error: Could not generate a response. Details: {e}"
async def process_message(message: str) -> dict:
inputs = message.strip()
responses = {}
with ThreadPoolExecutor(max_workers=min(len(global_data['model_configs']), 4)) as executor:
futures = [executor.submit(generate_model_response, model_manager.get_model(config['name']), inputs) for config in global_data['model_configs'] if model_manager.get_model(config['name'])]
for i, future in enumerate(tqdm(as_completed(futures), total=len(futures), desc="Generating responses")):
try:
model_name = global_data['model_configs'][i]['name']
responses[model_name] = future.result()
except Exception as e:
responses[model_name] = f"Error processing {model_name}: {e}"
stop_words = set(stopwords.words('english'))
vectorizer = TfidfVectorizer(tokenizer=word_tokenize, stop_words=stop_words)
reference_text = message
response_texts = list(responses.values())
tfidf_matrix = vectorizer.fit_transform([reference_text] + response_texts)
similarities = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:])
best_response_index = similarities.argmax()
best_response_model = list(responses.keys())[best_response_index]
best_response_text = response_texts[best_response_index]
return {"best_response": {"model": best_response_model, "text": best_response_text}, "all_responses": responses}
@app.post("/generate_multimodel")
async def api_generate_multimodel(request: Request):
try:
data = await request.json()
message = data.get("message")
if not message:
raise HTTPException(status_code=400, detail="Missing message")
response = await process_message(message)
return JSONResponse(response)
except HTTPException as e:
raise e
except Exception as e:
return JSONResponse({"error": str(e)}, status_code=500)
async def startup():
pass
async def shutdown():
gc.collect()
app.add_event_handler("startup", startup)
app.add_event_handler("shutdown", shutdown)
def release_resources():
try:
torch.cuda.empty_cache()
gc.collect()
except Exception as e:
print(f"Failed to release resources: {e}")
def resource_manager():
MAX_RAM_PERCENT = 20
MAX_CPU_PERCENT = 20
MAX_GPU_PERCENT = 20
MAX_RAM_MB = 2048
while True:
try:
virtual_mem = psutil.virtual_memory()
current_ram_percent = virtual_mem.percent
current_ram_mb = virtual_mem.used / (1024 * 1024)
if current_ram_percent > MAX_RAM_PERCENT or current_ram_mb > MAX_RAM_MB:
release_resources()
current_cpu_percent = psutil.cpu_percent()
if current_cpu_percent > MAX_CPU_PERCENT:
psutil.Process(os.getpid()).nice()
if torch.cuda.is_available():
gpu = torch.cuda.current_device()
gpu_mem = torch.cuda.memory_percent(gpu)
if gpu_mem > MAX_GPU_PERCENT:
release_resources()
except Exception as e:
print(f"Error in resource manager: {e}")
if __name__ == "__main__":
import threading
resource_thread = threading.Thread(target=resource_manager)
resource_thread.daemon = True
resource_thread.start()
port = int(os.environ.get("PORT", 7860))
uvicorn.run(app, host="0.0.0.0", port=port) |