File size: 7,436 Bytes
7a66365 3604d1e 7a66365 c49fa9d 7a66365 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import streamlit as st
from components.visualizations import plot_emotion_distribution
from utils import model_inference
from components.audio_player import play_audio
from components.debug_tools import DebugTools
import json
import os
import time
# ✅ 初始化 session_state 以存储分析结果和反馈状态
if "emotion_result" not in st.session_state:
st.session_state.emotion_result = None
if "feedback_submitted" not in st.session_state:
st.session_state.feedback_submitted = False
if "user_feedback" not in st.session_state:
st.session_state.user_feedback = ""
def show_history():
"""📜 显示历史记录(最近 5 条)"""
history_file = "history/history.json"
if os.path.exists(history_file):
with open(history_file, 'r') as f:
history = json.load(f)
if history:
st.subheader("📜 History")
with st.expander("Click to view past records", expanded=False):
for record in history[-5:]: # 只显示最近 5 条
st.write(f"🎧 **Audio File**: {record['audio_file']}")
st.write(f"📝 **Transcript**: {record['transcript']}")
st.write(f"🎭 **Emotions**: {record['emotions']}")
st.write("---")
else:
st.write("🚫 No history records found.")
else:
st.write("🚫 No history file.")
def show():
# ✅ 初始化 session_state 以存储分析结果和反馈状态
if "emotion_result" not in st.session_state:
st.session_state.emotion_result = None
if "feedback_submitted" not in st.session_state:
st.session_state.feedback_submitted = False
if "user_feedback" not in st.session_state:
st.session_state.user_feedback = ""
st.markdown(
"<h1 style='text-align: center; color: #FF5733;'>😉 Emotion Analyzer 🎭</h1>",
unsafe_allow_html=True
)
# 📜 显示历史记录
show_history()
# 🛠️ 初始化调试工具
debug = DebugTools()
debug.show_debug_info()
# 🎤 让用户上传音频和文本输入
st.markdown("---")
col1, col2 = st.columns(2)
with col1:
audio_file = st.file_uploader("Upload your audio file", type=['wav', 'mp3'])
# 🎧 如果音频存在,则显示音频信息
if audio_file is not None:
debug.show_audio_info(audio_file)
st.audio(audio_file, format="audio/mp3")
with col2:
text_input = st.text_input("Enter your text input")
transcript = text_input # 默认情况下,文本输入即为转写结果
st.write("📄 **Audio transcript:**", transcript)
# 🎯 **如果用户删除了音频,则自动重置情绪分析结果**
if audio_file is None and "emotion_result" in st.session_state and st.session_state.emotion_result is not None:
st.warning("🚫 Audio file removed. Resetting analysis results.")
st.session_state.emotion_result = None
# # 🎧 如果音频存在,则显示音频信息
# if audio_file is not None:
# debug.show_audio_info(audio_file)
# st.audio(audio_file, format="audio/mp3")
if audio_file is not None and text_input:
if st.button("Analyse Your Emotion! 😊"):
st.session_state.feedback_submitted = False # 重置反馈状态
# 📊 显示进度条
progress_bar = st.progress(0)
for percent in range(0, 101, 20):
progress_bar.progress(percent)
time.sleep(0.2) # 提高加载体验
try:
transcript = text_input
# 🔍 执行情绪分析
with st.spinner("Analysing emotion..."):
for percent in range(30, 101, 20):
progress_bar.progress(percent)
time.sleep(0.2) # 避免过快闪过
emotions = model_inference.predict_emotion(text_input, audio_file)
if emotions:
best_emotion = max(emotions, key=lambda x: float(emotions[x].strip('%')))
# 🎭 显示情绪分析结果
st.markdown("---")
st.markdown("### 🎭 Emotion Analysis Results")
st.success(f"🎭 **Predicted Emotion:** {best_emotion}")
st.success(f"📊 **Emotion Probabilities:** {emotions}")
# ✅ 存储分析结果,防止页面刷新导致结果丢失
st.session_state.emotion_result = {
"best_emotion": best_emotion,
"emotions": emotions,
"transcript": transcript
}
except Exception as e:
debug.log_error(e, context=f"Processing file: {audio_file.name}")
# 🎭 只有当有分析结果时,才显示结果
if st.session_state.emotion_result:
best_emotion = st.session_state.emotion_result["best_emotion"]
emotions = st.session_state.emotion_result["emotions"]
# 🎈 Streamlit 内置动画(仅用于 "Joy" 和 "Sad")
if best_emotion == "Joy":
st.balloons()
st.markdown("**Yay! You seem so happy! 🎉😊**")
st.write("Keep smiling, it's contagious! 🌟")
elif best_emotion == "Sad":
st.snow()
st.markdown("**Oh no, you seem a bit down... 😔💭**")
st.write("I'm here if you need to talk or cheer up! 💬💖")
else:
emotion_messages = {
"Angry": ["😡 **Whoa! Looks like you're really angry...**", "Take a deep breath, let's cool off together! 🧘♂️"],
"Surprised": ["🤯 **Wow, you're really surprised!**", "That's a big reaction! Hope it's a good surprise! 🎉"],
"Fearful": ["😨 **Looks like you're feeling scared...**", "It's okay to be scared. I'm here to help! 💪"],
"Disgusted": ["🤢 **Yikes, you're feeling disgusted...**", "That doesn't sound pleasant. Let's turn it around! 🌈"],
"Neutral": ["🤔 **Hmm, your emotions seem mixed...**", "Can you tell me more? Let's figure this out together! 💬"]
}
if best_emotion in emotion_messages:
st.markdown(emotion_messages[best_emotion][0])
st.write(emotion_messages[best_emotion][1])
# 📊 显示情绪分布图
plot_emotion_distribution(emotions)
# 💾 保存历史记录
if audio_file is not None:
model_inference.save_history(audio_file, transcript, emotions)
else:
st.warning("⚠️ No audio file uploaded. History not saved.")
# 📣 提供反馈功能
if st.session_state.emotion_result:
st.subheader("📣 Give us your feedback!")
feedback = st.radio("Do you agree with the prediction?", ["😀 Great!", "😐 Okay", "😡 Wrong"], index=1)
user_feedback = st.text_area("Tell us more (optional):", st.session_state.user_feedback)
if st.button("Submit Feedback"):
st.session_state.user_feedback = user_feedback
st.session_state.feedback_submitted = True
if st.session_state.feedback_submitted:
st.success("✅ Thank you for your feedback! It has been recorded.")
|