loge-dot
commited on
Commit
·
9952320
1
Parent(s):
d88ff3b
last_version
Browse files- app.py +1 -5
- components/__pycache__/visualizations.cpython-313.pyc +0 -0
- components/visualizations.py +4 -2
- history/history.json +142 -0
- models/config.json +118 -0
- models/model.safetensors +3 -0
- utils/__pycache__/model_inference.cpython-313.pyc +0 -0
- utils/model_inference.py +22 -19
app.py
CHANGED
@@ -11,10 +11,6 @@ except RuntimeError:
|
|
11 |
sys.path.append(str(Path(__file__).parent))
|
12 |
|
13 |
|
14 |
-
|
15 |
-
# 确保能找到项目模块
|
16 |
-
sys.path.append(str(Path(__file__).parent))
|
17 |
-
|
18 |
from pages import emotion_analyzer # 导入情绪分析页面和 Chatbot 页面
|
19 |
|
20 |
def main():
|
@@ -27,7 +23,7 @@ def main():
|
|
27 |
st.title("Audio Emotion Recognition System")
|
28 |
st.write("This is a web application for audio emotion recognition.")
|
29 |
|
30 |
-
#
|
31 |
emotion_analyzer.show()
|
32 |
|
33 |
if __name__ == "__main__":
|
|
|
11 |
sys.path.append(str(Path(__file__).parent))
|
12 |
|
13 |
|
|
|
|
|
|
|
|
|
14 |
from pages import emotion_analyzer # 导入情绪分析页面和 Chatbot 页面
|
15 |
|
16 |
def main():
|
|
|
23 |
st.title("Audio Emotion Recognition System")
|
24 |
st.write("This is a web application for audio emotion recognition.")
|
25 |
|
26 |
+
# 只测试情绪分析页面
|
27 |
emotion_analyzer.show()
|
28 |
|
29 |
if __name__ == "__main__":
|
components/__pycache__/visualizations.cpython-313.pyc
CHANGED
Binary files a/components/__pycache__/visualizations.cpython-313.pyc and b/components/__pycache__/visualizations.cpython-313.pyc differ
|
|
components/visualizations.py
CHANGED
@@ -27,9 +27,11 @@ def plot_emotion_distribution(emotion_dict):
|
|
27 |
polar=dict(
|
28 |
radialaxis=dict(
|
29 |
visible=True,
|
30 |
-
range=[0,
|
|
|
|
|
31 |
)),
|
32 |
showlegend=False
|
33 |
)
|
34 |
|
35 |
-
st.plotly_chart(fig, use_container_width=True)
|
|
|
27 |
polar=dict(
|
28 |
radialaxis=dict(
|
29 |
visible=True,
|
30 |
+
range=[0, 0.3], # 设置范围
|
31 |
+
tickvals=[0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3], # 设置刻度
|
32 |
+
ticktext=['0%', '5%', '10%', '15%', '20%', '25%', '30%'] # 设置刻度标签
|
33 |
)),
|
34 |
showlegend=False
|
35 |
)
|
36 |
|
37 |
+
st.plotly_chart(fig, use_container_width=True)
|
history/history.json
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"audio_file": "test.wav",
|
4 |
+
"transcript": "please go now and make sure they stay from away, come back as soon as you can",
|
5 |
+
"emotions": {
|
6 |
+
"Neutral": "11.89%",
|
7 |
+
"Joy": "16.05%",
|
8 |
+
"Sad": "14.53%",
|
9 |
+
"Angry": "14.88%",
|
10 |
+
"Surprised": "14.02%",
|
11 |
+
"Fearful": "14.50%",
|
12 |
+
"Disgusted": "14.13%"
|
13 |
+
},
|
14 |
+
"probabilities": null
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"audio_file": "test.wav",
|
18 |
+
"transcript": "please go now and make sure they stay from away, come back as soon as you can",
|
19 |
+
"emotions": {
|
20 |
+
"Neutral": "11.89%",
|
21 |
+
"Joy": "16.05%",
|
22 |
+
"Sad": "14.53%",
|
23 |
+
"Angry": "14.88%",
|
24 |
+
"Surprised": "14.02%",
|
25 |
+
"Fearful": "14.50%",
|
26 |
+
"Disgusted": "14.13%"
|
27 |
+
},
|
28 |
+
"probabilities": null
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"audio_file": "test.wav",
|
32 |
+
"transcript": "please go now and make sure they stay from away, come back as soon as you can",
|
33 |
+
"emotions": {
|
34 |
+
"Neutral": "11.89%",
|
35 |
+
"Joy": "16.05%",
|
36 |
+
"Sad": "14.53%",
|
37 |
+
"Angry": "14.88%",
|
38 |
+
"Surprised": "14.02%",
|
39 |
+
"Fearful": "14.50%",
|
40 |
+
"Disgusted": "14.13%"
|
41 |
+
},
|
42 |
+
"probabilities": null
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"audio_file": "test.wav",
|
46 |
+
"transcript": "please go now and make sure they stay from away, come back as soon as you can",
|
47 |
+
"emotions": {
|
48 |
+
"Neutral": "11.89%",
|
49 |
+
"Joy": "16.05%",
|
50 |
+
"Sad": "14.53%",
|
51 |
+
"Angry": "14.88%",
|
52 |
+
"Surprised": "14.02%",
|
53 |
+
"Fearful": "14.50%",
|
54 |
+
"Disgusted": "14.13%"
|
55 |
+
},
|
56 |
+
"probabilities": null
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"audio_file": "test.wav",
|
60 |
+
"transcript": "please go now and make sure they stay from away, come back as soon as you can",
|
61 |
+
"emotions": {
|
62 |
+
"Neutral": "11.89%",
|
63 |
+
"Joy": "16.05%",
|
64 |
+
"Sad": "14.53%",
|
65 |
+
"Angry": "14.88%",
|
66 |
+
"Surprised": "14.02%",
|
67 |
+
"Fearful": "14.50%",
|
68 |
+
"Disgusted": "14.13%"
|
69 |
+
},
|
70 |
+
"probabilities": null
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"audio_file": "test.wav",
|
74 |
+
"transcript": "Please go now, and make sure to stay safe on the way. Come back as soon as you can.",
|
75 |
+
"emotions": {
|
76 |
+
"Neutral": "11.93%",
|
77 |
+
"Joy": "16.90%",
|
78 |
+
"Sad": "14.75%",
|
79 |
+
"Angry": "14.36%",
|
80 |
+
"Surprised": "14.24%",
|
81 |
+
"Fearful": "14.24%",
|
82 |
+
"Disgusted": "13.57%"
|
83 |
+
},
|
84 |
+
"probabilities": null
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"audio_file": "test.wav",
|
88 |
+
"transcript": "Please go now, and make sure to stay safe on the way. Come back as soon as you can.",
|
89 |
+
"emotions": {
|
90 |
+
"Neutral": "54.73%",
|
91 |
+
"Joy": "5.80%",
|
92 |
+
"Sad": "29.00%",
|
93 |
+
"Angry": "2.24%",
|
94 |
+
"Surprised": "0.51%",
|
95 |
+
"Fearful": "6.93%",
|
96 |
+
"Disgusted": "0.78%"
|
97 |
+
},
|
98 |
+
"probabilities": null
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"audio_file": "en-US-DavisNeural_sad_2x(1).wav",
|
102 |
+
"transcript": "I am fine. Just thinking about some things, that's all.",
|
103 |
+
"emotions": {
|
104 |
+
"Neutral": "12.95%",
|
105 |
+
"Joy": "42.23%",
|
106 |
+
"Sad": "41.40%",
|
107 |
+
"Angry": "0.25%",
|
108 |
+
"Surprised": "0.75%",
|
109 |
+
"Fearful": "2.24%",
|
110 |
+
"Disgusted": "0.19%"
|
111 |
+
},
|
112 |
+
"probabilities": null
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"audio_file": "en-US-NancyNeural_sad_2x(1).wav",
|
116 |
+
"transcript": "I am fine. Just thinking about some things, that's all.",
|
117 |
+
"emotions": {
|
118 |
+
"Neutral": "13.23%",
|
119 |
+
"Joy": "43.65%",
|
120 |
+
"Sad": "39.48%",
|
121 |
+
"Angry": "0.28%",
|
122 |
+
"Surprised": "0.79%",
|
123 |
+
"Fearful": "2.35%",
|
124 |
+
"Disgusted": "0.22%"
|
125 |
+
},
|
126 |
+
"probabilities": null
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"audio_file": "301_26.wav",
|
130 |
+
"transcript": "stayed in school you know not let the accident just distract me and not i wouldve remained in school i probably wouldnt have had kids early you know um",
|
131 |
+
"emotions": {
|
132 |
+
"Neutral": "16.10%",
|
133 |
+
"Joy": "0.46%",
|
134 |
+
"Sad": "81.54%",
|
135 |
+
"Angry": "0.30%",
|
136 |
+
"Surprised": "0.18%",
|
137 |
+
"Fearful": "1.24%",
|
138 |
+
"Disgusted": "0.17%"
|
139 |
+
},
|
140 |
+
"probabilities": null
|
141 |
+
}
|
142 |
+
]
|
models/config.json
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-base",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"adapter_attn_dim": null,
|
5 |
+
"adapter_kernel_size": 3,
|
6 |
+
"adapter_stride": 2,
|
7 |
+
"add_adapter": false,
|
8 |
+
"apply_spec_augment": true,
|
9 |
+
"architectures": [
|
10 |
+
"Wav2Vec2ForPreTraining"
|
11 |
+
],
|
12 |
+
"attention_dropout": 0.1,
|
13 |
+
"bos_token_id": 1,
|
14 |
+
"classifier_proj_size": 256,
|
15 |
+
"codevector_dim": 256,
|
16 |
+
"contrastive_logits_temperature": 0.05,
|
17 |
+
"conv_bias": false,
|
18 |
+
"conv_dim": [
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512,
|
25 |
+
512
|
26 |
+
],
|
27 |
+
"conv_kernel": [
|
28 |
+
10,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
3,
|
33 |
+
2,
|
34 |
+
2
|
35 |
+
],
|
36 |
+
"conv_stride": [
|
37 |
+
5,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2,
|
43 |
+
2
|
44 |
+
],
|
45 |
+
"ctc_loss_reduction": "sum",
|
46 |
+
"ctc_zero_infinity": false,
|
47 |
+
"diversity_loss_weight": 0.05,
|
48 |
+
"do_stable_layer_norm": false,
|
49 |
+
"eos_token_id": 2,
|
50 |
+
"feat_extract_activation": "gelu",
|
51 |
+
"feat_extract_norm": "group",
|
52 |
+
"feat_proj_dropout": 0.1,
|
53 |
+
"feat_quantizer_dropout": 0.0,
|
54 |
+
"final_dropout": 0.0,
|
55 |
+
"freeze_feat_extract_train": true,
|
56 |
+
"hidden_act": "gelu",
|
57 |
+
"hidden_dropout": 0.1,
|
58 |
+
"hidden_size": 768,
|
59 |
+
"initializer_range": 0.02,
|
60 |
+
"intermediate_size": 3072,
|
61 |
+
"layer_norm_eps": 1e-05,
|
62 |
+
"layerdrop": 0.0,
|
63 |
+
"mask_channel_length": 10,
|
64 |
+
"mask_channel_min_space": 1,
|
65 |
+
"mask_channel_other": 0.0,
|
66 |
+
"mask_channel_prob": 0.0,
|
67 |
+
"mask_channel_selection": "static",
|
68 |
+
"mask_feature_length": 10,
|
69 |
+
"mask_feature_min_masks": 0,
|
70 |
+
"mask_feature_prob": 0.0,
|
71 |
+
"mask_time_length": 5,
|
72 |
+
"mask_time_min_masks": 2,
|
73 |
+
"mask_time_min_space": 1,
|
74 |
+
"mask_time_other": 0.0,
|
75 |
+
"mask_time_prob": 0.05,
|
76 |
+
"mask_time_selection": "static",
|
77 |
+
"model_type": "wav2vec2",
|
78 |
+
"no_mask_channel_overlap": false,
|
79 |
+
"no_mask_time_overlap": false,
|
80 |
+
"num_adapter_layers": 3,
|
81 |
+
"num_attention_heads": 12,
|
82 |
+
"num_codevector_groups": 2,
|
83 |
+
"num_codevectors_per_group": 320,
|
84 |
+
"num_conv_pos_embedding_groups": 16,
|
85 |
+
"num_conv_pos_embeddings": 128,
|
86 |
+
"num_feat_extract_layers": 7,
|
87 |
+
"num_hidden_layers": 12,
|
88 |
+
"num_negatives": 50,
|
89 |
+
"output_hidden_size": 768,
|
90 |
+
"pad_token_id": 0,
|
91 |
+
"proj_codevector_dim": 256,
|
92 |
+
"tdnn_dilation": [
|
93 |
+
1,
|
94 |
+
2,
|
95 |
+
3,
|
96 |
+
1,
|
97 |
+
1
|
98 |
+
],
|
99 |
+
"tdnn_dim": [
|
100 |
+
512,
|
101 |
+
512,
|
102 |
+
512,
|
103 |
+
512,
|
104 |
+
1500
|
105 |
+
],
|
106 |
+
"tdnn_kernel": [
|
107 |
+
5,
|
108 |
+
3,
|
109 |
+
3,
|
110 |
+
1,
|
111 |
+
1
|
112 |
+
],
|
113 |
+
"torch_dtype": "float32",
|
114 |
+
"transformers_version": "4.47.0",
|
115 |
+
"use_weighted_layer_sum": false,
|
116 |
+
"vocab_size": 32,
|
117 |
+
"xvector_output_dim": 512
|
118 |
+
}
|
models/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68228ad3957d05effe3fc941e0c304d1ae960095c2689e5a4fc39ed9170d07b5
|
3 |
+
size 819785044
|
utils/__pycache__/model_inference.cpython-313.pyc
CHANGED
Binary files a/utils/__pycache__/model_inference.cpython-313.pyc and b/utils/__pycache__/model_inference.cpython-313.pyc differ
|
|
utils/model_inference.py
CHANGED
@@ -20,7 +20,7 @@ import torch.nn as nn
|
|
20 |
from transformers import AutoModelForSequenceClassification, AutoConfig, Wav2Vec2ForPreTraining
|
21 |
|
22 |
class MultimodalClassifier(nn.Module):
|
23 |
-
def __init__(self,
|
24 |
super().__init__()
|
25 |
|
26 |
# **加载微调后的 BERT**
|
@@ -31,10 +31,10 @@ class MultimodalClassifier(nn.Module):
|
|
31 |
nn.Dropout(0.5),
|
32 |
nn.Linear(self.bert.config.hidden_size, self.bert.config.num_labels)
|
33 |
)
|
34 |
-
try:
|
35 |
-
|
36 |
-
except Exception as e:
|
37 |
-
|
38 |
|
39 |
# **先加载 Wav2Vec2**
|
40 |
config = AutoConfig.from_pretrained(wav2vec2_config_path, num_labels=7)
|
@@ -45,13 +45,13 @@ class MultimodalClassifier(nn.Module):
|
|
45 |
nn.Dropout(0.5),
|
46 |
nn.Linear(self.wav2vec2.config.hidden_size, self.wav2vec2.config.num_labels)
|
47 |
)
|
48 |
-
# **加载 safetensors 权重**
|
49 |
-
from safetensors.torch import load_file
|
50 |
-
state_dict = load_file(wav2vec2_safetensors_path)
|
51 |
-
try:
|
52 |
-
|
53 |
-
except Exception as e:
|
54 |
-
|
55 |
|
56 |
# **拼接特征的分类头**
|
57 |
self.classifier = nn.Sequential(
|
@@ -81,12 +81,15 @@ class MultimodalClassifier(nn.Module):
|
|
81 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
82 |
|
83 |
# **定义路径**
|
84 |
-
|
85 |
-
|
86 |
-
wav2vec2_safetensors_path = "wav2vec2.safetensors"
|
87 |
|
88 |
-
#
|
89 |
-
model = MultimodalClassifier(
|
|
|
|
|
|
|
|
|
90 |
model.eval()
|
91 |
|
92 |
print("✅ 微调的 BERT + Wav2Vec2 模型加载成功!")
|
@@ -104,7 +107,7 @@ def preprocess_audio(audio_path):
|
|
104 |
print(waveform)
|
105 |
return waveform.to(device)
|
106 |
|
107 |
-
labels = ["Neutral", "
|
108 |
|
109 |
def predict_emotion(text, audio):
|
110 |
text_inputs = preprocess_text(text)
|
@@ -122,7 +125,7 @@ def generate_transcript(audio_file):
|
|
122 |
|
123 |
def save_history(audio_file, transcript, emotions, probabilities):
|
124 |
"""保存分析历史记录到文件"""
|
125 |
-
history_file = "history.json"
|
126 |
|
127 |
if not os.path.exists(history_file):
|
128 |
with open(history_file, 'w') as f:
|
|
|
20 |
from transformers import AutoModelForSequenceClassification, AutoConfig, Wav2Vec2ForPreTraining
|
21 |
|
22 |
class MultimodalClassifier(nn.Module):
|
23 |
+
def __init__(self, wav2vec2_config_path):
|
24 |
super().__init__()
|
25 |
|
26 |
# **加载微调后的 BERT**
|
|
|
31 |
nn.Dropout(0.5),
|
32 |
nn.Linear(self.bert.config.hidden_size, self.bert.config.num_labels)
|
33 |
)
|
34 |
+
# try:
|
35 |
+
# self.bert.load_state_dict(torch.load(bert_ckpt_path, map_location=torch.device("cpu")), strict=True)
|
36 |
+
# except Exception as e:
|
37 |
+
# print(f"❌ 加载 `{bert_ckpt_path}` 失败: {e}")
|
38 |
|
39 |
# **先加载 Wav2Vec2**
|
40 |
config = AutoConfig.from_pretrained(wav2vec2_config_path, num_labels=7)
|
|
|
45 |
nn.Dropout(0.5),
|
46 |
nn.Linear(self.wav2vec2.config.hidden_size, self.wav2vec2.config.num_labels)
|
47 |
)
|
48 |
+
# # **加载 safetensors 权重**
|
49 |
+
# from safetensors.torch import load_file
|
50 |
+
# state_dict = load_file(wav2vec2_safetensors_path)
|
51 |
+
# try:
|
52 |
+
# self.wav2vec2.load_state_dict(state_dict, strict=False)
|
53 |
+
# except Exception as e:
|
54 |
+
# print(f"❌ 加载 `{wav2vec2_safetensors_path}` 失败: {e}")
|
55 |
|
56 |
# **拼接特征的分类头**
|
57 |
self.classifier = nn.Sequential(
|
|
|
81 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
82 |
|
83 |
# **定义路径**
|
84 |
+
wav2vec2_config_path = r"models/config.json"
|
85 |
+
model_path = r"models/model.safetensors"
|
|
|
86 |
|
87 |
+
# **加载模型及其参数**
|
88 |
+
model = MultimodalClassifier(wav2vec2_config_path).to(device)
|
89 |
+
|
90 |
+
state_dict = load_file(model_path)
|
91 |
+
model.load_state_dict(state_dict, strict=True)
|
92 |
+
model.to(device)
|
93 |
model.eval()
|
94 |
|
95 |
print("✅ 微调的 BERT + Wav2Vec2 模型加载成功!")
|
|
|
107 |
print(waveform)
|
108 |
return waveform.to(device)
|
109 |
|
110 |
+
labels = ["Neutral", "Joy", "Sad", "Angry", "Surprised", "Fearful", "Disgusted"]
|
111 |
|
112 |
def predict_emotion(text, audio):
|
113 |
text_inputs = preprocess_text(text)
|
|
|
125 |
|
126 |
def save_history(audio_file, transcript, emotions, probabilities):
|
127 |
"""保存分析历史记录到文件"""
|
128 |
+
history_file = r"history/history.json"
|
129 |
|
130 |
if not os.path.exists(history_file):
|
131 |
with open(history_file, 'w') as f:
|