loge-dot commited on
Commit
9952320
·
1 Parent(s): d88ff3b

last_version

Browse files
app.py CHANGED
@@ -11,10 +11,6 @@ except RuntimeError:
11
  sys.path.append(str(Path(__file__).parent))
12
 
13
 
14
-
15
- # 确保能找到项目模块
16
- sys.path.append(str(Path(__file__).parent))
17
-
18
  from pages import emotion_analyzer # 导入情绪分析页面和 Chatbot 页面
19
 
20
  def main():
@@ -27,7 +23,7 @@ def main():
27
  st.title("Audio Emotion Recognition System")
28
  st.write("This is a web application for audio emotion recognition.")
29
 
30
- # 先只测试情绪分析页面
31
  emotion_analyzer.show()
32
 
33
  if __name__ == "__main__":
 
11
  sys.path.append(str(Path(__file__).parent))
12
 
13
 
 
 
 
 
14
  from pages import emotion_analyzer # 导入情绪分析页面和 Chatbot 页面
15
 
16
  def main():
 
23
  st.title("Audio Emotion Recognition System")
24
  st.write("This is a web application for audio emotion recognition.")
25
 
26
+ # 只测试情绪分析页面
27
  emotion_analyzer.show()
28
 
29
  if __name__ == "__main__":
components/__pycache__/visualizations.cpython-313.pyc CHANGED
Binary files a/components/__pycache__/visualizations.cpython-313.pyc and b/components/__pycache__/visualizations.cpython-313.pyc differ
 
components/visualizations.py CHANGED
@@ -27,9 +27,11 @@ def plot_emotion_distribution(emotion_dict):
27
  polar=dict(
28
  radialaxis=dict(
29
  visible=True,
30
- range=[0, 1] # 设置范围
 
 
31
  )),
32
  showlegend=False
33
  )
34
 
35
- st.plotly_chart(fig, use_container_width=True)
 
27
  polar=dict(
28
  radialaxis=dict(
29
  visible=True,
30
+ range=[0, 0.3], # 设置范围
31
+ tickvals=[0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3], # 设置刻度
32
+ ticktext=['0%', '5%', '10%', '15%', '20%', '25%', '30%'] # 设置刻度标签
33
  )),
34
  showlegend=False
35
  )
36
 
37
+ st.plotly_chart(fig, use_container_width=True)
history/history.json ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "audio_file": "test.wav",
4
+ "transcript": "please go now and make sure they stay from away, come back as soon as you can",
5
+ "emotions": {
6
+ "Neutral": "11.89%",
7
+ "Joy": "16.05%",
8
+ "Sad": "14.53%",
9
+ "Angry": "14.88%",
10
+ "Surprised": "14.02%",
11
+ "Fearful": "14.50%",
12
+ "Disgusted": "14.13%"
13
+ },
14
+ "probabilities": null
15
+ },
16
+ {
17
+ "audio_file": "test.wav",
18
+ "transcript": "please go now and make sure they stay from away, come back as soon as you can",
19
+ "emotions": {
20
+ "Neutral": "11.89%",
21
+ "Joy": "16.05%",
22
+ "Sad": "14.53%",
23
+ "Angry": "14.88%",
24
+ "Surprised": "14.02%",
25
+ "Fearful": "14.50%",
26
+ "Disgusted": "14.13%"
27
+ },
28
+ "probabilities": null
29
+ },
30
+ {
31
+ "audio_file": "test.wav",
32
+ "transcript": "please go now and make sure they stay from away, come back as soon as you can",
33
+ "emotions": {
34
+ "Neutral": "11.89%",
35
+ "Joy": "16.05%",
36
+ "Sad": "14.53%",
37
+ "Angry": "14.88%",
38
+ "Surprised": "14.02%",
39
+ "Fearful": "14.50%",
40
+ "Disgusted": "14.13%"
41
+ },
42
+ "probabilities": null
43
+ },
44
+ {
45
+ "audio_file": "test.wav",
46
+ "transcript": "please go now and make sure they stay from away, come back as soon as you can",
47
+ "emotions": {
48
+ "Neutral": "11.89%",
49
+ "Joy": "16.05%",
50
+ "Sad": "14.53%",
51
+ "Angry": "14.88%",
52
+ "Surprised": "14.02%",
53
+ "Fearful": "14.50%",
54
+ "Disgusted": "14.13%"
55
+ },
56
+ "probabilities": null
57
+ },
58
+ {
59
+ "audio_file": "test.wav",
60
+ "transcript": "please go now and make sure they stay from away, come back as soon as you can",
61
+ "emotions": {
62
+ "Neutral": "11.89%",
63
+ "Joy": "16.05%",
64
+ "Sad": "14.53%",
65
+ "Angry": "14.88%",
66
+ "Surprised": "14.02%",
67
+ "Fearful": "14.50%",
68
+ "Disgusted": "14.13%"
69
+ },
70
+ "probabilities": null
71
+ },
72
+ {
73
+ "audio_file": "test.wav",
74
+ "transcript": "Please go now, and make sure to stay safe on the way. Come back as soon as you can.",
75
+ "emotions": {
76
+ "Neutral": "11.93%",
77
+ "Joy": "16.90%",
78
+ "Sad": "14.75%",
79
+ "Angry": "14.36%",
80
+ "Surprised": "14.24%",
81
+ "Fearful": "14.24%",
82
+ "Disgusted": "13.57%"
83
+ },
84
+ "probabilities": null
85
+ },
86
+ {
87
+ "audio_file": "test.wav",
88
+ "transcript": "Please go now, and make sure to stay safe on the way. Come back as soon as you can.",
89
+ "emotions": {
90
+ "Neutral": "54.73%",
91
+ "Joy": "5.80%",
92
+ "Sad": "29.00%",
93
+ "Angry": "2.24%",
94
+ "Surprised": "0.51%",
95
+ "Fearful": "6.93%",
96
+ "Disgusted": "0.78%"
97
+ },
98
+ "probabilities": null
99
+ },
100
+ {
101
+ "audio_file": "en-US-DavisNeural_sad_2x(1).wav",
102
+ "transcript": "I am fine. Just thinking about some things, that's all.",
103
+ "emotions": {
104
+ "Neutral": "12.95%",
105
+ "Joy": "42.23%",
106
+ "Sad": "41.40%",
107
+ "Angry": "0.25%",
108
+ "Surprised": "0.75%",
109
+ "Fearful": "2.24%",
110
+ "Disgusted": "0.19%"
111
+ },
112
+ "probabilities": null
113
+ },
114
+ {
115
+ "audio_file": "en-US-NancyNeural_sad_2x(1).wav",
116
+ "transcript": "I am fine. Just thinking about some things, that's all.",
117
+ "emotions": {
118
+ "Neutral": "13.23%",
119
+ "Joy": "43.65%",
120
+ "Sad": "39.48%",
121
+ "Angry": "0.28%",
122
+ "Surprised": "0.79%",
123
+ "Fearful": "2.35%",
124
+ "Disgusted": "0.22%"
125
+ },
126
+ "probabilities": null
127
+ },
128
+ {
129
+ "audio_file": "301_26.wav",
130
+ "transcript": "stayed in school you know not let the accident just distract me and not i wouldve remained in school i probably wouldnt have had kids early you know um",
131
+ "emotions": {
132
+ "Neutral": "16.10%",
133
+ "Joy": "0.46%",
134
+ "Sad": "81.54%",
135
+ "Angry": "0.30%",
136
+ "Surprised": "0.18%",
137
+ "Fearful": "1.24%",
138
+ "Disgusted": "0.17%"
139
+ },
140
+ "probabilities": null
141
+ }
142
+ ]
models/config.json ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-base",
3
+ "activation_dropout": 0.0,
4
+ "adapter_attn_dim": null,
5
+ "adapter_kernel_size": 3,
6
+ "adapter_stride": 2,
7
+ "add_adapter": false,
8
+ "apply_spec_augment": true,
9
+ "architectures": [
10
+ "Wav2Vec2ForPreTraining"
11
+ ],
12
+ "attention_dropout": 0.1,
13
+ "bos_token_id": 1,
14
+ "classifier_proj_size": 256,
15
+ "codevector_dim": 256,
16
+ "contrastive_logits_temperature": 0.05,
17
+ "conv_bias": false,
18
+ "conv_dim": [
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512,
25
+ 512
26
+ ],
27
+ "conv_kernel": [
28
+ 10,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 3,
33
+ 2,
34
+ 2
35
+ ],
36
+ "conv_stride": [
37
+ 5,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2,
43
+ 2
44
+ ],
45
+ "ctc_loss_reduction": "sum",
46
+ "ctc_zero_infinity": false,
47
+ "diversity_loss_weight": 0.05,
48
+ "do_stable_layer_norm": false,
49
+ "eos_token_id": 2,
50
+ "feat_extract_activation": "gelu",
51
+ "feat_extract_norm": "group",
52
+ "feat_proj_dropout": 0.1,
53
+ "feat_quantizer_dropout": 0.0,
54
+ "final_dropout": 0.0,
55
+ "freeze_feat_extract_train": true,
56
+ "hidden_act": "gelu",
57
+ "hidden_dropout": 0.1,
58
+ "hidden_size": 768,
59
+ "initializer_range": 0.02,
60
+ "intermediate_size": 3072,
61
+ "layer_norm_eps": 1e-05,
62
+ "layerdrop": 0.0,
63
+ "mask_channel_length": 10,
64
+ "mask_channel_min_space": 1,
65
+ "mask_channel_other": 0.0,
66
+ "mask_channel_prob": 0.0,
67
+ "mask_channel_selection": "static",
68
+ "mask_feature_length": 10,
69
+ "mask_feature_min_masks": 0,
70
+ "mask_feature_prob": 0.0,
71
+ "mask_time_length": 5,
72
+ "mask_time_min_masks": 2,
73
+ "mask_time_min_space": 1,
74
+ "mask_time_other": 0.0,
75
+ "mask_time_prob": 0.05,
76
+ "mask_time_selection": "static",
77
+ "model_type": "wav2vec2",
78
+ "no_mask_channel_overlap": false,
79
+ "no_mask_time_overlap": false,
80
+ "num_adapter_layers": 3,
81
+ "num_attention_heads": 12,
82
+ "num_codevector_groups": 2,
83
+ "num_codevectors_per_group": 320,
84
+ "num_conv_pos_embedding_groups": 16,
85
+ "num_conv_pos_embeddings": 128,
86
+ "num_feat_extract_layers": 7,
87
+ "num_hidden_layers": 12,
88
+ "num_negatives": 50,
89
+ "output_hidden_size": 768,
90
+ "pad_token_id": 0,
91
+ "proj_codevector_dim": 256,
92
+ "tdnn_dilation": [
93
+ 1,
94
+ 2,
95
+ 3,
96
+ 1,
97
+ 1
98
+ ],
99
+ "tdnn_dim": [
100
+ 512,
101
+ 512,
102
+ 512,
103
+ 512,
104
+ 1500
105
+ ],
106
+ "tdnn_kernel": [
107
+ 5,
108
+ 3,
109
+ 3,
110
+ 1,
111
+ 1
112
+ ],
113
+ "torch_dtype": "float32",
114
+ "transformers_version": "4.47.0",
115
+ "use_weighted_layer_sum": false,
116
+ "vocab_size": 32,
117
+ "xvector_output_dim": 512
118
+ }
models/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68228ad3957d05effe3fc941e0c304d1ae960095c2689e5a4fc39ed9170d07b5
3
+ size 819785044
utils/__pycache__/model_inference.cpython-313.pyc CHANGED
Binary files a/utils/__pycache__/model_inference.cpython-313.pyc and b/utils/__pycache__/model_inference.cpython-313.pyc differ
 
utils/model_inference.py CHANGED
@@ -20,7 +20,7 @@ import torch.nn as nn
20
  from transformers import AutoModelForSequenceClassification, AutoConfig, Wav2Vec2ForPreTraining
21
 
22
  class MultimodalClassifier(nn.Module):
23
- def __init__(self, bert_ckpt_path, wav2vec2_config_path, wav2vec2_safetensors_path):
24
  super().__init__()
25
 
26
  # **加载微调后的 BERT**
@@ -31,10 +31,10 @@ class MultimodalClassifier(nn.Module):
31
  nn.Dropout(0.5),
32
  nn.Linear(self.bert.config.hidden_size, self.bert.config.num_labels)
33
  )
34
- try:
35
- self.bert.load_state_dict(torch.load(bert_ckpt_path, map_location=torch.device("cpu")), strict=True)
36
- except Exception as e:
37
- print(f"❌ 加载 `{bert_ckpt_path}` 失败: {e}")
38
 
39
  # **先加载 Wav2Vec2**
40
  config = AutoConfig.from_pretrained(wav2vec2_config_path, num_labels=7)
@@ -45,13 +45,13 @@ class MultimodalClassifier(nn.Module):
45
  nn.Dropout(0.5),
46
  nn.Linear(self.wav2vec2.config.hidden_size, self.wav2vec2.config.num_labels)
47
  )
48
- # **加载 safetensors 权重**
49
- from safetensors.torch import load_file
50
- state_dict = load_file(wav2vec2_safetensors_path)
51
- try:
52
- self.wav2vec2.load_state_dict(state_dict, strict=False)
53
- except Exception as e:
54
- print(f"❌ 加载 `{wav2vec2_safetensors_path}` 失败: {e}")
55
 
56
  # **拼接特征的分类头**
57
  self.classifier = nn.Sequential(
@@ -81,12 +81,15 @@ class MultimodalClassifier(nn.Module):
81
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
82
 
83
  # **定义路径**
84
- bert_ckpt_path = "bert_meld_finetune_model.pth"
85
- wav2vec2_config_path = "config.json"
86
- wav2vec2_safetensors_path = "wav2vec2.safetensors"
87
 
88
- # **加载模型**
89
- model = MultimodalClassifier(bert_ckpt_path, wav2vec2_config_path, wav2vec2_safetensors_path).to(device)
 
 
 
 
90
  model.eval()
91
 
92
  print("✅ 微调的 BERT + Wav2Vec2 模型加载成功!")
@@ -104,7 +107,7 @@ def preprocess_audio(audio_path):
104
  print(waveform)
105
  return waveform.to(device)
106
 
107
- labels = ["Neutral", "Happy", "Sad", "Angry", "Fearful", "Disgusted", "Surprised"]
108
 
109
  def predict_emotion(text, audio):
110
  text_inputs = preprocess_text(text)
@@ -122,7 +125,7 @@ def generate_transcript(audio_file):
122
 
123
  def save_history(audio_file, transcript, emotions, probabilities):
124
  """保存分析历史记录到文件"""
125
- history_file = "history.json"
126
 
127
  if not os.path.exists(history_file):
128
  with open(history_file, 'w') as f:
 
20
  from transformers import AutoModelForSequenceClassification, AutoConfig, Wav2Vec2ForPreTraining
21
 
22
  class MultimodalClassifier(nn.Module):
23
+ def __init__(self, wav2vec2_config_path):
24
  super().__init__()
25
 
26
  # **加载微调后的 BERT**
 
31
  nn.Dropout(0.5),
32
  nn.Linear(self.bert.config.hidden_size, self.bert.config.num_labels)
33
  )
34
+ # try:
35
+ # self.bert.load_state_dict(torch.load(bert_ckpt_path, map_location=torch.device("cpu")), strict=True)
36
+ # except Exception as e:
37
+ # print(f"❌ 加载 `{bert_ckpt_path}` 失败: {e}")
38
 
39
  # **先加载 Wav2Vec2**
40
  config = AutoConfig.from_pretrained(wav2vec2_config_path, num_labels=7)
 
45
  nn.Dropout(0.5),
46
  nn.Linear(self.wav2vec2.config.hidden_size, self.wav2vec2.config.num_labels)
47
  )
48
+ # # **加载 safetensors 权重**
49
+ # from safetensors.torch import load_file
50
+ # state_dict = load_file(wav2vec2_safetensors_path)
51
+ # try:
52
+ # self.wav2vec2.load_state_dict(state_dict, strict=False)
53
+ # except Exception as e:
54
+ # print(f"❌ 加载 `{wav2vec2_safetensors_path}` 失败: {e}")
55
 
56
  # **拼接特征的分类头**
57
  self.classifier = nn.Sequential(
 
81
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
82
 
83
  # **定义路径**
84
+ wav2vec2_config_path = r"models/config.json"
85
+ model_path = r"models/model.safetensors"
 
86
 
87
+ # **加载模型及其参数**
88
+ model = MultimodalClassifier(wav2vec2_config_path).to(device)
89
+
90
+ state_dict = load_file(model_path)
91
+ model.load_state_dict(state_dict, strict=True)
92
+ model.to(device)
93
  model.eval()
94
 
95
  print("✅ 微调的 BERT + Wav2Vec2 模型加载成功!")
 
107
  print(waveform)
108
  return waveform.to(device)
109
 
110
+ labels = ["Neutral", "Joy", "Sad", "Angry", "Surprised", "Fearful", "Disgusted"]
111
 
112
  def predict_emotion(text, audio):
113
  text_inputs = preprocess_text(text)
 
125
 
126
  def save_history(audio_file, transcript, emotions, probabilities):
127
  """保存分析历史记录到文件"""
128
+ history_file = r"history/history.json"
129
 
130
  if not os.path.exists(history_file):
131
  with open(history_file, 'w') as f: