Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| import spaces | |
| from PIL import Image | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| from optimization import optimize_pipeline_ | |
| from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline | |
| from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel | |
| from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 | |
| import math | |
| from huggingface_hub import hf_hub_download | |
| from safetensors.torch import load_file | |
| from PIL import Image | |
| import os | |
| import gradio as gr | |
| from gradio_client import Client, handle_file | |
| import tempfile | |
| from typing import Optional, Tuple, Any | |
| # --- Model Loading --- | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = QwenImageEditPlusPipeline.from_pretrained( | |
| "Qwen/Qwen-Image-Edit-2509", | |
| transformer=QwenImageTransformer2DModel.from_pretrained( | |
| "linoyts/Qwen-Image-Edit-Rapid-AIO", | |
| subfolder='transformer', | |
| torch_dtype=dtype, | |
| device_map='cuda' | |
| ), | |
| torch_dtype=dtype | |
| ).to(device) | |
| pipe.load_lora_weights( | |
| "dx8152/Qwen-Edit-2509-Multiple-angles", | |
| weight_name="镜头转换.safetensors", | |
| adapter_name="angles" | |
| ) | |
| pipe.set_adapters(["angles"], adapter_weights=[1.]) | |
| pipe.fuse_lora(adapter_names=["angles"], lora_scale=1.25) | |
| pipe.unload_lora_weights() | |
| pipe.transformer.__class__ = QwenImageTransformer2DModel | |
| pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) | |
| optimize_pipeline_( | |
| pipe, | |
| image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], | |
| prompt="prompt" | |
| ) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def _generate_video_segment( | |
| input_image_path: str, | |
| output_image_path: str, | |
| prompt: str, | |
| request: gr.Request | |
| ) -> str: | |
| """ | |
| Generate a single video segment between two frames by calling an external | |
| Wan 2.2 image-to-video service hosted on Hugging Face Spaces. | |
| This helper function is used internally when the user asks to create | |
| a video between the input and output images. | |
| Args: | |
| input_image_path (str): | |
| Path to the starting frame image on disk. | |
| output_image_path (str): | |
| Path to the ending frame image on disk. | |
| prompt (str): | |
| Text prompt describing the camera movement / transition. | |
| request (gr.Request): | |
| Gradio request object, used here to forward the `x-ip-token` | |
| header to the downstream Space for authentication/rate limiting. | |
| Returns: | |
| str: | |
| A string returned by the external service, usually a URL or path | |
| to the generated video. | |
| """ | |
| x_ip_token = request.headers['x-ip-token'] | |
| video_client = Client( | |
| "multimodalart/wan-2-2-first-last-frame", | |
| headers={"x-ip-token": x_ip_token} | |
| ) | |
| result = video_client.predict( | |
| start_image_pil=handle_file(input_image_path), | |
| end_image_pil=handle_file(output_image_path), | |
| prompt=prompt, | |
| api_name="/generate_video", | |
| ) | |
| return result[0]["video"] | |
| def build_camera_prompt( | |
| rotate_deg: float = 0.0, | |
| move_forward: float = 0.0, | |
| vertical_tilt: float = 0.0, | |
| wideangle: bool = False | |
| ) -> str: | |
| """ | |
| Build a camera movement prompt based on the chosen controls. | |
| This converts the provided control values into a prompt instruction with the corresponding trigger words for the multiple-angles LoRA. | |
| Args: | |
| rotate_deg (float, optional): | |
| Horizontal rotation in degrees. Positive values rotate left, | |
| negative values rotate right. Defaults to 0.0. | |
| move_forward (float, optional): | |
| Forward movement / zoom factor. Larger values imply moving the | |
| camera closer or into a close-up. Defaults to 0.0. | |
| vertical_tilt (float, optional): | |
| Vertical angle of the camera: | |
| - Negative ≈ bird's-eye view | |
| - Positive ≈ worm's-eye view | |
| Defaults to 0.0. | |
| wideangle (bool, optional): | |
| Whether to switch to a wide-angle lens style. Defaults to False. | |
| Returns: | |
| str: | |
| A text prompt describing the camera motion. If no controls are | |
| active, returns `"no camera movement"`. | |
| """ | |
| prompt_parts = [] | |
| # Rotation | |
| if rotate_deg != 0: | |
| direction = "left" if rotate_deg > 0 else "right" | |
| if direction == "left": | |
| prompt_parts.append( | |
| f"将镜头向左旋转{abs(rotate_deg)}度 Rotate the camera {abs(rotate_deg)} degrees to the left." | |
| ) | |
| else: | |
| prompt_parts.append( | |
| f"将镜头向右旋转{abs(rotate_deg)}度 Rotate the camera {abs(rotate_deg)} degrees to the right." | |
| ) | |
| # Move forward / close-up | |
| if move_forward > 5: | |
| prompt_parts.append("将镜头转为特写镜头 Turn the camera to a close-up.") | |
| elif move_forward >= 1: | |
| prompt_parts.append("将镜头向前移动 Move the camera forward.") | |
| # Vertical tilt | |
| if vertical_tilt <= -1: | |
| prompt_parts.append("将相机转向鸟瞰视角 Turn the camera to a bird's-eye view.") | |
| elif vertical_tilt >= 1: | |
| prompt_parts.append("将相机切换到仰视视角 Turn the camera to a worm's-eye view.") | |
| # Lens option | |
| if wideangle: | |
| prompt_parts.append(" 将镜头转为广角镜头 Turn the camera to a wide-angle lens.") | |
| final_prompt = " ".join(prompt_parts).strip() | |
| return final_prompt if final_prompt else "no camera movement" | |
| def infer_camera_edit( | |
| image: Optional[Image.Image] = None, | |
| rotate_deg: float = 0.0, | |
| move_forward: float = 0.0, | |
| vertical_tilt: float = 0.0, | |
| wideangle: bool = False, | |
| seed: int = 0, | |
| randomize_seed: bool = True, | |
| true_guidance_scale: float = 1.0, | |
| num_inference_steps: int = 4, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| prev_output: Optional[Image.Image] = None, | |
| ) -> Tuple[Image.Image, int, str]: | |
| """ | |
| Edit the camera angles/view of an image with Qwen Image Edit 2509 and dx8152's Qwen-Edit-2509-Multiple-angles LoRA. | |
| Applies a camera-style transformation (rotation, zoom, tilt, lens) | |
| to an input image. | |
| Args: | |
| image (PIL.Image.Image | None, optional): | |
| Input image to edit. If `None`, the function will instead try to | |
| use `prev_output`. At least one of `image` or `prev_output` must | |
| be available. Defaults to None. | |
| rotate_deg (float, optional): | |
| Horizontal rotation in degrees (-90, -45, 0, 45, 90). Positive values rotate | |
| to the left, negative to the right. Defaults to 0.0. | |
| move_forward (float, optional): | |
| Forward movement / zoom factor (0, 5, 10). Higher values move the | |
| camera closer; values >5 switch to a close-up style. Defaults to 0.0. | |
| vertical_tilt (float, optional): | |
| Vertical tilt (-1 to 1). -1 ≈ bird's-eye view, +1 ≈ worm's-eye view. | |
| Defaults to 0.0. | |
| wideangle (bool, optional): | |
| Whether to use a wide-angle lens style. Defaults to False. | |
| seed (int, optional): | |
| Random seed for the generation. Ignored if `randomize_seed=True`. | |
| Defaults to 0. | |
| randomize_seed (bool, optional): | |
| If True, a random seed (0..MAX_SEED) is chosen per call. | |
| Defaults to True. | |
| true_guidance_scale (float, optional): | |
| CFG / guidance scale controlling prompt adherence. | |
| Defaults to 1.0 since the demo is using a distilled transformer for faster inference. | |
| num_inference_steps (int, optional): | |
| Number of inference steps. Defaults to 4. | |
| height (int, optional): | |
| Output image height. Must typically be a multiple of 8. | |
| If set to 0, the model will infer a size. Defaults to 1024 if none is provided. | |
| width (int, optional): | |
| Output image width. Must typically be a multiple of 8. | |
| If set to 0, the model will infer a size. Defaults to 1024 if none is provided. | |
| prev_output (PIL.Image.Image | None, optional): | |
| Previous output image to use as input when no new image is uploaded. | |
| Defaults to None. | |
| Returns: | |
| Tuple[PIL.Image.Image, int, str]: | |
| - The edited output image. | |
| - The actual seed used for generation. | |
| - The constructed camera prompt string. | |
| """ | |
| progress = gr.Progress(track_tqdm=True) | |
| prompt = build_camera_prompt(rotate_deg, move_forward, vertical_tilt, wideangle) | |
| print(f"Generated Prompt: {prompt}") | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| # Choose input image (prefer uploaded, else last output) | |
| pil_images = [] | |
| if image is not None: | |
| if isinstance(image, Image.Image): | |
| pil_images.append(image.convert("RGB")) | |
| elif hasattr(image, "name"): | |
| pil_images.append(Image.open(image.name).convert("RGB")) | |
| elif prev_output: | |
| pil_images.append(prev_output.convert("RGB")) | |
| if len(pil_images) == 0: | |
| raise gr.Error("Please upload an image first.") | |
| if prompt == "no camera movement": | |
| return image, seed, prompt | |
| result = pipe( | |
| image=pil_images, | |
| prompt=prompt, | |
| height=height if height != 0 else None, | |
| width=width if width != 0 else None, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| true_cfg_scale=true_guidance_scale, | |
| num_images_per_prompt=1, | |
| ).images[0] | |
| return result, seed, prompt | |
| def create_video_between_images( | |
| input_image: Optional[Image.Image], | |
| output_image: Optional[np.ndarray], | |
| prompt: str, | |
| request: gr.Request | |
| ) -> str: | |
| """ | |
| Create a short transition video between the input and output images via the | |
| Wan 2.2 first-last-frame Space. | |
| Args: | |
| input_image (PIL.Image.Image | None): | |
| Starting frame image (the original / previous view). | |
| output_image (numpy.ndarray | None): | |
| Ending frame image - the output image with the the edited camera angles. | |
| prompt (str): | |
| The camera movement prompt used to describe the transition. | |
| request (gr.Request): | |
| Gradio request object, used to forward the `x-ip-token` header | |
| to the video generation app. | |
| Returns: | |
| str: | |
| a path pointing to the generated video. | |
| Raises: | |
| gr.Error: | |
| If either image is missing or if the video generation fails. | |
| """ | |
| if input_image is None or output_image is None: | |
| raise gr.Error("Both input and output images are required to create a video.") | |
| try: | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp: | |
| input_image.save(tmp.name) | |
| input_image_path = tmp.name | |
| output_pil = Image.fromarray(output_image.astype('uint8')) | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp: | |
| output_pil.save(tmp.name) | |
| output_image_path = tmp.name | |
| video_path = _generate_video_segment( | |
| input_image_path, | |
| output_image_path, | |
| prompt if prompt else "Camera movement transformation", | |
| request | |
| ) | |
| return video_path | |
| except Exception as e: | |
| raise gr.Error(f"Video generation failed: {e}") | |
| # --- UI --- | |
| css = '''#col-container { max-width: 800px; margin: 0 auto; } | |
| .dark .progress-text{color: white !important} | |
| #examples{max-width: 800px; margin: 0 auto; }''' | |
| def reset_all() -> list: | |
| """ | |
| Reset all camera control knobs and flags to their default values. | |
| This is used by the "Reset" button to set: | |
| - rotate_deg = 0 | |
| - move_forward = 0 | |
| - vertical_tilt = 0 | |
| - wideangle = False | |
| - is_reset = True | |
| Returns: | |
| list: | |
| A list of values matching the order of the reset outputs: | |
| [rotate_deg, move_forward, vertical_tilt, wideangle, is_reset, True] | |
| """ | |
| return [0, 0, 0, 0, False, True] | |
| def end_reset() -> bool: | |
| """ | |
| Mark the end of a reset cycle. | |
| This helper is chained after `reset_all` to set the internal | |
| `is_reset` flag back to False, so that live inference can resume. | |
| Returns: | |
| bool: | |
| Always returns False. | |
| """ | |
| return False | |
| def update_dimensions_on_upload( | |
| image: Optional[Image.Image] | |
| ) -> Tuple[int, int]: | |
| """ | |
| Compute recommended (width, height) for the output resolution when an | |
| image is uploaded while preserveing the aspect ratio. | |
| Args: | |
| image (PIL.Image.Image | None): | |
| The uploaded image. If `None`, defaults to (1024, 1024). | |
| Returns: | |
| Tuple[int, int]: | |
| The new (width, height). | |
| """ | |
| if image is None: | |
| return 1024, 1024 | |
| original_width, original_height = image.size | |
| if original_width > original_height: | |
| new_width = 1024 | |
| aspect_ratio = original_height / original_width | |
| new_height = int(new_width * aspect_ratio) | |
| else: | |
| new_height = 1024 | |
| aspect_ratio = original_width / original_height | |
| new_width = int(new_height * aspect_ratio) | |
| # Ensure dimensions are multiples of 8 | |
| new_width = (new_width // 8) * 8 | |
| new_height = (new_height // 8) * 8 | |
| return new_width, new_height | |
| with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("## 🎬 Qwen Image Edit — Camera Angle Control") | |
| gr.Markdown(""" | |
| Qwen Image Edit 2509 for Camera Control ✨ | |
| Using [dx8152's Qwen-Edit-2509-Multiple-angles LoRA](https://huggingface.co/dx8152/Qwen-Edit-2509-Multiple-angles) and [Phr00t/Qwen-Image-Edit-Rapid-AIO](https://huggingface.co/Phr00t/Qwen-Image-Edit-Rapid-AIO/tree/main) for 4-step inference 💨 | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(label="Input Image", type="pil") | |
| prev_output = gr.Image(value=None, visible=False) | |
| is_reset = gr.Checkbox(value=False, visible=False) | |
| with gr.Tab("Camera Controls"): | |
| rotate_deg = gr.Slider( | |
| label="Rotate Right-Left (degrees °)", | |
| minimum=-90, | |
| maximum=90, | |
| step=45, | |
| value=0 | |
| ) | |
| move_forward = gr.Slider( | |
| label="Move Forward → Close-Up", | |
| minimum=0, | |
| maximum=10, | |
| step=5, | |
| value=0 | |
| ) | |
| vertical_tilt = gr.Slider( | |
| label="Vertical Angle (Bird ↔ Worm)", | |
| minimum=-1, | |
| maximum=1, | |
| step=1, | |
| value=0 | |
| ) | |
| wideangle = gr.Checkbox(label="Wide-Angle Lens", value=False) | |
| with gr.Row(): | |
| reset_btn = gr.Button("Reset") | |
| run_btn = gr.Button("Generate", variant="primary") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0 | |
| ) | |
| randomize_seed = gr.Checkbox( | |
| label="Randomize Seed", | |
| value=True | |
| ) | |
| true_guidance_scale = gr.Slider( | |
| label="True Guidance Scale", | |
| minimum=1.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=1.0 | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Inference Steps", | |
| minimum=1, | |
| maximum=40, | |
| step=1, | |
| value=4 | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=2048, | |
| step=8, | |
| value=1024 | |
| ) | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=2048, | |
| step=8, | |
| value=1024 | |
| ) | |
| with gr.Column(): | |
| result = gr.Image(label="Output Image", interactive=False) | |
| prompt_preview = gr.Textbox(label="Processed Prompt", interactive=False) | |
| create_video_button = gr.Button( | |
| "🎥 Create Video Between Images", | |
| variant="secondary", | |
| visible=False | |
| ) | |
| with gr.Group(visible=False) as video_group: | |
| video_output = gr.Video( | |
| label="Generated Video", | |
| show_download_button=True, | |
| autoplay=True | |
| ) | |
| inputs = [ | |
| image, rotate_deg, move_forward, | |
| vertical_tilt, wideangle, | |
| seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output | |
| ] | |
| outputs = [result, seed, prompt_preview] | |
| # Reset behavior | |
| reset_btn.click( | |
| fn=reset_all, | |
| inputs=None, | |
| outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset], | |
| queue=False | |
| ).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False) | |
| # Manual generation with video button visibility control | |
| def infer_and_show_video_button(*args: Any): | |
| """ | |
| Wrapper around `infer_camera_edit` that also controls the visibility | |
| of the 'Create Video Between Images' button. | |
| The first argument in `args` is expected to be the input image; if both | |
| input and output images are present, the video button is shown. | |
| Args: | |
| *args: | |
| Positional arguments forwarded directly to `infer_camera_edit`. | |
| Returns: | |
| tuple: | |
| (output_image, seed, prompt, video_button_visibility_update) | |
| """ | |
| result_img, result_seed, result_prompt = infer_camera_edit(*args) | |
| # Show video button if we have both input and output images | |
| show_button = args[0] is not None and result_img is not None | |
| return result_img, result_seed, result_prompt, gr.update(visible=show_button) | |
| run_event = run_btn.click( | |
| fn=infer_and_show_video_button, | |
| inputs=inputs, | |
| outputs=outputs + [create_video_button] | |
| ) | |
| # Video creation | |
| create_video_button.click( | |
| fn=lambda: gr.update(visible=True), | |
| outputs=[video_group], | |
| api_name=False | |
| ).then( | |
| fn=create_video_between_images, | |
| inputs=[image, result, prompt_preview], | |
| outputs=[video_output], | |
| api_name=False | |
| ) | |
| # Examples | |
| gr.Examples( | |
| examples=[ | |
| ["tool_of_the_sea.png", 90, 0, 0, False, 0, True, 1.0, 4, 568, 1024], | |
| ["monkey.jpg", -90, 0, 0, False, 0, True, 1.0, 4, 704, 1024], | |
| ["metropolis.jpg", 0, 0, -1, False, 0, True, 1.0, 4, 816, 1024], | |
| ["disaster_girl.jpg", -45, 0, 1, False, 0, True, 1.0, 4, 768, 1024], | |
| ["grumpy.png", 90, 0, 1, False, 0, True, 1.0, 4, 576, 1024] | |
| ], | |
| inputs=[ | |
| image, rotate_deg, move_forward, | |
| vertical_tilt, wideangle, | |
| seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width | |
| ], | |
| outputs=outputs, | |
| fn=infer_camera_edit, | |
| cache_examples="lazy", | |
| elem_id="examples" | |
| ) | |
| # Image upload triggers dimension update and control reset | |
| image.upload( | |
| fn=update_dimensions_on_upload, | |
| inputs=[image], | |
| outputs=[width, height] | |
| ).then( | |
| fn=reset_all, | |
| inputs=None, | |
| outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset], | |
| queue=False | |
| ).then( | |
| fn=end_reset, | |
| inputs=None, | |
| outputs=[is_reset], | |
| queue=False | |
| ) | |
| # Live updates | |
| def maybe_infer( | |
| is_reset: bool, | |
| progress: gr.Progress = gr.Progress(track_tqdm=True), | |
| *args: Any | |
| ): | |
| if is_reset: | |
| return gr.update(), gr.update(), gr.update(), gr.update() | |
| else: | |
| result_img, result_seed, result_prompt = infer_camera_edit(*args) | |
| # Show video button if we have both input and output | |
| show_button = args[0] is not None and result_img is not None | |
| return result_img, result_seed, result_prompt, gr.update(visible=show_button) | |
| control_inputs = [ | |
| image, rotate_deg, move_forward, | |
| vertical_tilt, wideangle, | |
| seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output | |
| ] | |
| control_inputs_with_flag = [is_reset] + control_inputs | |
| for control in [rotate_deg, move_forward, vertical_tilt]: | |
| control.release( | |
| fn=maybe_infer, | |
| inputs=control_inputs_with_flag, | |
| outputs=outputs + [create_video_button] | |
| ) | |
| wideangle.input( | |
| fn=maybe_infer, | |
| inputs=control_inputs_with_flag, | |
| outputs=outputs + [create_video_button] | |
| ) | |
| run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output]) | |
| gr.api(infer_camera_edit, api_name="infer_edit_camera_angles") | |
| gr.api(create_video_between_images, api_name="create_video_between_images") | |
| demo.launch(mcp_server=True, show_api=True) | |