|
|
''' |
|
|
根据现有HuggingFace的LLM的调用方式写一个模板 |
|
|
注意一下是否调用方式类似,如果不类似,需要修改里面的推理代码 |
|
|
支持:Qwen,ChatLLM等 |
|
|
''' |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
class ChatGLM: |
|
|
def __init__(self, mode='offline', model_path = 'THUDM/chatglm3-6b', prefix_prompt = '''请用少于25个字回答以下问题\n\n'''): |
|
|
self.mode = mode |
|
|
self.model, self.tokenizer = self.init_model(model_path) |
|
|
self.history = None |
|
|
self.prefix_prompt = prefix_prompt |
|
|
assert self.mode == 'offline', "ChatGLM只支持离线模式" |
|
|
|
|
|
def init_model(self, model_path): |
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, |
|
|
device_map="auto", |
|
|
trust_remote_code=True).eval() |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) |
|
|
return model, tokenizer |
|
|
|
|
|
def generate(self, prompt, system_prompt=""): |
|
|
if self.mode != 'api': |
|
|
try: |
|
|
|
|
|
|
|
|
response, self.history = self.model.chat(self.tokenizer, self.prefix_prompt + prompt, history=self.history) |
|
|
return response |
|
|
except Exception as e: |
|
|
print(e) |
|
|
return "对不起,你的请求出错了,请再次尝试。\nSorry, your request has encountered an error. Please try again.\n" |
|
|
else: |
|
|
return self.predict_api(prompt) |
|
|
|
|
|
def predict_api(self, prompt): |
|
|
'''暂时不写api版本,与Linly-api相类似,感兴趣可以实现一下''' |
|
|
pass |
|
|
|
|
|
def chat(self, system_prompt, message): |
|
|
response = self.generate(message, system_prompt) |
|
|
self.history.append((message, response)) |
|
|
return response, self.history |
|
|
|
|
|
def clear_history(self): |
|
|
self.history = [] |
|
|
|
|
|
def test(): |
|
|
llm = ChatGLM(mode='offline',model_path='THUDM/chatglm3-6b') |
|
|
answer = llm.generate("如何应对压力?") |
|
|
print(answer) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
test() |
|
|
|