|
|
import os |
|
|
import torch |
|
|
import requests |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
os.environ['CUDA_LAUNCH_BLOCKING'] = '1' |
|
|
|
|
|
class Qwen2: |
|
|
def __init__(self, mode='offline', model_path="Qwen/Qwen1.5-0.5B-Chat", prefix_prompt = '''请用少于25个字回答以下问题\n\n'''): |
|
|
'''暂时不写api版本,与Linly-api相类似,感兴趣可以实现一下''' |
|
|
self.url = "http://ip:port" |
|
|
self.headers = { |
|
|
"Content-Type": "application/json" |
|
|
} |
|
|
self.data = { |
|
|
"question": "北京有什么好玩的地方?" |
|
|
} |
|
|
self.prefix_prompt = prefix_prompt |
|
|
self.mode = mode |
|
|
self.model, self.tokenizer = self.init_model(model_path) |
|
|
self.history = None |
|
|
|
|
|
def init_model(self, path = "Qwen/Qwen2-0.5B"): |
|
|
model = AutoModelForCausalLM.from_pretrained(path, |
|
|
device_map="auto", |
|
|
torch_dtype="auto", |
|
|
trust_remote_code=True).eval() |
|
|
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True) |
|
|
|
|
|
return model, tokenizer |
|
|
|
|
|
def generate(self, question, system_prompt="You are a helpful assistant."): |
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
if self.mode != 'api': |
|
|
try: |
|
|
|
|
|
messages = [ |
|
|
{"role": "system", "content": system_prompt}, |
|
|
{"role": "user", "content": self.prefix_prompt + question} |
|
|
] |
|
|
text = self.tokenizer.apply_chat_template( |
|
|
messages, |
|
|
tokenize=False, |
|
|
add_generation_prompt=True |
|
|
) |
|
|
model_inputs = self.tokenizer([text], return_tensors="pt").to(device) |
|
|
generated_ids = self.model.generate( |
|
|
model_inputs.input_ids, |
|
|
max_new_tokens=512 |
|
|
) |
|
|
generated_ids = [ |
|
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
|
] |
|
|
|
|
|
response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
|
|
return response |
|
|
except Exception as e: |
|
|
print(e) |
|
|
return "对不起,你的请求出错了,请再次尝试。\nSorry, your request has encountered an error. Please try again.\n" |
|
|
else: |
|
|
return self.predict_api(question) |
|
|
def predict_api(self, question): |
|
|
'''暂时不写api版本,与Linly-api相类似,感兴趣可以实现一下''' |
|
|
pass |
|
|
|
|
|
def chat(self, system_prompt, message, history): |
|
|
response = self.generate(message, system_prompt) |
|
|
history.append((message, response)) |
|
|
return response, history |
|
|
|
|
|
def clear_history(self): |
|
|
|
|
|
self.history = [] |
|
|
|
|
|
def test(): |
|
|
llm = Qwen2(mode='offline', model_path="Qwen/Qwen1.5-0.5B-Chat") |
|
|
|
|
|
answer = llm.generate("如何应对压力?") |
|
|
print(answer) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
test() |
|
|
|