|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
class LLMTemplate: |
|
|
def __init__(self, model_name_or_path, mode='offline'): |
|
|
""" |
|
|
初始化LLM模板 |
|
|
|
|
|
Args: |
|
|
model_name_or_path (str): 模型名称或路径 |
|
|
mode (str, optional): 模式,'offline'表示离线模式,'api'表示使用API模式。默认为'offline'。 |
|
|
""" |
|
|
self.mode = mode |
|
|
|
|
|
self.model, self.tokenizer = self.init_model(model_name_or_path) |
|
|
self.history = None |
|
|
|
|
|
def init_model(self, model_name_or_path): |
|
|
""" |
|
|
初始化语言模型 |
|
|
|
|
|
Args: |
|
|
model_name_or_path (str): 模型名称或路径 |
|
|
|
|
|
Returns: |
|
|
model: 加载的语言模型 |
|
|
tokenizer: 加载的tokenizer |
|
|
""" |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, |
|
|
device_map="auto", |
|
|
trust_remote_code=True).eval() |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True) |
|
|
return model, tokenizer |
|
|
|
|
|
def generate(self, prompt, system_prompt=""): |
|
|
""" |
|
|
生成对话响应 |
|
|
|
|
|
Args: |
|
|
prompt (str): 对话的提示 |
|
|
system_prompt (str, optional): 系统提示。默认为""。 |
|
|
|
|
|
Returns: |
|
|
str: 对话响应 |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
if self.mode != 'api': |
|
|
try: |
|
|
response, self.history = self.model.chat(self.tokenizer, prompt, history=self.history, system = system_prompt) |
|
|
return response |
|
|
except Exception as e: |
|
|
print(e) |
|
|
return "对不起,你的请求出错了,请再次尝试。\nSorry, your request has encountered an error. Please try again.\n" |
|
|
else: |
|
|
return self.predict_api(prompt) |
|
|
|
|
|
def predict_api(self, prompt): |
|
|
""" |
|
|
使用API预测对话响应 |
|
|
|
|
|
Args: |
|
|
prompt (str): 对话的提示 |
|
|
|
|
|
Returns: |
|
|
str: 对话响应 |
|
|
""" |
|
|
'''暂时不写api版本,与Linly-api相类似,感兴趣可以实现一下''' |
|
|
pass |
|
|
|
|
|
def chat(self, system_prompt, message): |
|
|
response = self.generate(message, system_prompt) |
|
|
self.history.append((message, response)) |
|
|
return response, self.history |
|
|
|
|
|
def clear_history(self): |
|
|
self.history = [] |
|
|
|