lllyasviel
i
9360743
import torch
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import DEFAULT_PROMPT_TEMPLATE
from diffusers_helper.utils import crop_or_pad_yield_mask
@torch.no_grad()
def encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, max_length=256):
assert isinstance(prompt, str)
prompt = [prompt]
# LLAMA
prompt_llama = [DEFAULT_PROMPT_TEMPLATE["template"].format(p) for p in prompt]
crop_start = DEFAULT_PROMPT_TEMPLATE["crop_start"]
llama_inputs = tokenizer(
prompt_llama,
padding="max_length",
max_length=max_length + crop_start,
truncation=True,
return_tensors="pt",
return_length=False,
return_overflowing_tokens=False,
return_attention_mask=True,
)
llama_input_ids = llama_inputs.input_ids.to(text_encoder.device)
llama_attention_mask = llama_inputs.attention_mask.to(text_encoder.device)
llama_attention_length = int(llama_attention_mask.sum())
llama_outputs = text_encoder(
input_ids=llama_input_ids,
attention_mask=llama_attention_mask,
output_hidden_states=True,
)
llama_vec = llama_outputs.hidden_states[-3][:, crop_start:llama_attention_length]
# llama_vec_remaining = llama_outputs.hidden_states[-3][:, llama_attention_length:]
llama_attention_mask = llama_attention_mask[:, crop_start:llama_attention_length]
assert torch.all(llama_attention_mask.bool())
# CLIP
clip_l_input_ids = tokenizer_2(
prompt,
padding="max_length",
max_length=77,
truncation=True,
return_overflowing_tokens=False,
return_length=False,
return_tensors="pt",
).input_ids
clip_l_pooler = text_encoder_2(clip_l_input_ids.to(text_encoder_2.device), output_hidden_states=False).pooler_output
return llama_vec, clip_l_pooler
@torch.no_grad()
def vae_decode_fake(latents):
latent_rgb_factors = [
[-0.0395, -0.0331, 0.0445],
[0.0696, 0.0795, 0.0518],
[0.0135, -0.0945, -0.0282],
[0.0108, -0.0250, -0.0765],
[-0.0209, 0.0032, 0.0224],
[-0.0804, -0.0254, -0.0639],
[-0.0991, 0.0271, -0.0669],
[-0.0646, -0.0422, -0.0400],
[-0.0696, -0.0595, -0.0894],
[-0.0799, -0.0208, -0.0375],
[0.1166, 0.1627, 0.0962],
[0.1165, 0.0432, 0.0407],
[-0.2315, -0.1920, -0.1355],
[-0.0270, 0.0401, -0.0821],
[-0.0616, -0.0997, -0.0727],
[0.0249, -0.0469, -0.1703]
] # From comfyui
latent_rgb_factors_bias = [0.0259, -0.0192, -0.0761]
weight = torch.tensor(latent_rgb_factors, device=latents.device, dtype=latents.dtype).transpose(0, 1)[:, :, None, None, None]
bias = torch.tensor(latent_rgb_factors_bias, device=latents.device, dtype=latents.dtype)
images = torch.nn.functional.conv3d(latents, weight, bias=bias, stride=1, padding=0, dilation=1, groups=1)
images = images.clamp(0.0, 1.0)
return images
@torch.no_grad()
def vae_decode(latents, vae, image_mode=False):
latents = latents / vae.config.scaling_factor
if not image_mode:
image = vae.decode(latents.to(device=vae.device, dtype=vae.dtype)).sample
else:
latents = latents.to(device=vae.device, dtype=vae.dtype).unbind(2)
image = [vae.decode(l.unsqueeze(2)).sample for l in latents]
image = torch.cat(image, dim=2)
return image
@torch.no_grad()
def vae_encode(image, vae):
latents = vae.encode(image.to(device=vae.device, dtype=vae.dtype)).latent_dist.sample()
latents = latents * vae.config.scaling_factor
return latents