Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import DEFAULT_PROMPT_TEMPLATE | |
from diffusers_helper.utils import crop_or_pad_yield_mask | |
def encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, max_length=256): | |
assert isinstance(prompt, str) | |
prompt = [prompt] | |
# LLAMA | |
prompt_llama = [DEFAULT_PROMPT_TEMPLATE["template"].format(p) for p in prompt] | |
crop_start = DEFAULT_PROMPT_TEMPLATE["crop_start"] | |
llama_inputs = tokenizer( | |
prompt_llama, | |
padding="max_length", | |
max_length=max_length + crop_start, | |
truncation=True, | |
return_tensors="pt", | |
return_length=False, | |
return_overflowing_tokens=False, | |
return_attention_mask=True, | |
) | |
llama_input_ids = llama_inputs.input_ids.to(text_encoder.device) | |
llama_attention_mask = llama_inputs.attention_mask.to(text_encoder.device) | |
llama_attention_length = int(llama_attention_mask.sum()) | |
llama_outputs = text_encoder( | |
input_ids=llama_input_ids, | |
attention_mask=llama_attention_mask, | |
output_hidden_states=True, | |
) | |
llama_vec = llama_outputs.hidden_states[-3][:, crop_start:llama_attention_length] | |
# llama_vec_remaining = llama_outputs.hidden_states[-3][:, llama_attention_length:] | |
llama_attention_mask = llama_attention_mask[:, crop_start:llama_attention_length] | |
assert torch.all(llama_attention_mask.bool()) | |
# CLIP | |
clip_l_input_ids = tokenizer_2( | |
prompt, | |
padding="max_length", | |
max_length=77, | |
truncation=True, | |
return_overflowing_tokens=False, | |
return_length=False, | |
return_tensors="pt", | |
).input_ids | |
clip_l_pooler = text_encoder_2(clip_l_input_ids.to(text_encoder_2.device), output_hidden_states=False).pooler_output | |
return llama_vec, clip_l_pooler | |
def vae_decode_fake(latents): | |
latent_rgb_factors = [ | |
[-0.0395, -0.0331, 0.0445], | |
[0.0696, 0.0795, 0.0518], | |
[0.0135, -0.0945, -0.0282], | |
[0.0108, -0.0250, -0.0765], | |
[-0.0209, 0.0032, 0.0224], | |
[-0.0804, -0.0254, -0.0639], | |
[-0.0991, 0.0271, -0.0669], | |
[-0.0646, -0.0422, -0.0400], | |
[-0.0696, -0.0595, -0.0894], | |
[-0.0799, -0.0208, -0.0375], | |
[0.1166, 0.1627, 0.0962], | |
[0.1165, 0.0432, 0.0407], | |
[-0.2315, -0.1920, -0.1355], | |
[-0.0270, 0.0401, -0.0821], | |
[-0.0616, -0.0997, -0.0727], | |
[0.0249, -0.0469, -0.1703] | |
] # From comfyui | |
latent_rgb_factors_bias = [0.0259, -0.0192, -0.0761] | |
weight = torch.tensor(latent_rgb_factors, device=latents.device, dtype=latents.dtype).transpose(0, 1)[:, :, None, None, None] | |
bias = torch.tensor(latent_rgb_factors_bias, device=latents.device, dtype=latents.dtype) | |
images = torch.nn.functional.conv3d(latents, weight, bias=bias, stride=1, padding=0, dilation=1, groups=1) | |
images = images.clamp(0.0, 1.0) | |
return images | |
def vae_decode(latents, vae, image_mode=False): | |
latents = latents / vae.config.scaling_factor | |
if not image_mode: | |
image = vae.decode(latents.to(device=vae.device, dtype=vae.dtype)).sample | |
else: | |
latents = latents.to(device=vae.device, dtype=vae.dtype).unbind(2) | |
image = [vae.decode(l.unsqueeze(2)).sample for l in latents] | |
image = torch.cat(image, dim=2) | |
return image | |
def vae_encode(image, vae): | |
latents = vae.encode(image.to(device=vae.device, dtype=vae.dtype)).latent_dist.sample() | |
latents = latents * vae.config.scaling_factor | |
return latents | |