# By lllyasviel import torch import os # 检查是否在Hugging Face Space环境中 IN_HF_SPACE = os.environ.get('SPACE_ID') is not None # 设置CPU设备 cpu = torch.device('cpu') # 在Stateless GPU环境中,不要在主进程初始化CUDA def get_gpu_device(): if IN_HF_SPACE: # 在Spaces中将延迟初始化GPU设备 return 'cuda' # 返回字符串,而不是实际初始化设备 # 非Spaces环境正常初始化 try: if torch.cuda.is_available(): return torch.device(f'cuda:{torch.cuda.current_device()}') else: print("CUDA不可用,使用CPU作为默认设备") return torch.device('cpu') except Exception as e: print(f"初始化CUDA设备时出错: {e}") print("回退到CPU设备") return torch.device('cpu') # 保存一个字符串表示,而不是实际的设备对象 gpu = get_gpu_device() gpu_complete_modules = [] class DynamicSwapInstaller: @staticmethod def _install_module(module: torch.nn.Module, **kwargs): original_class = module.__class__ module.__dict__['forge_backup_original_class'] = original_class def hacked_get_attr(self, name: str): if '_parameters' in self.__dict__: _parameters = self.__dict__['_parameters'] if name in _parameters: p = _parameters[name] if p is None: return None if p.__class__ == torch.nn.Parameter: return torch.nn.Parameter(p.to(**kwargs), requires_grad=p.requires_grad) else: return p.to(**kwargs) if '_buffers' in self.__dict__: _buffers = self.__dict__['_buffers'] if name in _buffers: return _buffers[name].to(**kwargs) return super(original_class, self).__getattr__(name) module.__class__ = type('DynamicSwap_' + original_class.__name__, (original_class,), { '__getattr__': hacked_get_attr, }) return @staticmethod def _uninstall_module(module: torch.nn.Module): if 'forge_backup_original_class' in module.__dict__: module.__class__ = module.__dict__.pop('forge_backup_original_class') return @staticmethod def install_model(model: torch.nn.Module, **kwargs): for m in model.modules(): DynamicSwapInstaller._install_module(m, **kwargs) return @staticmethod def uninstall_model(model: torch.nn.Module): for m in model.modules(): DynamicSwapInstaller._uninstall_module(m) return def fake_diffusers_current_device(model: torch.nn.Module, target_device): # 转换字符串设备为torch.device if isinstance(target_device, str): target_device = torch.device(target_device) if hasattr(model, 'scale_shift_table'): model.scale_shift_table.data = model.scale_shift_table.data.to(target_device) return for k, p in model.named_modules(): if hasattr(p, 'weight'): p.to(target_device) return def get_cuda_free_memory_gb(device=None): if device is None: device = gpu # 如果是字符串,转换为设备 if isinstance(device, str): device = torch.device(device) # 如果不是CUDA设备,返回默认值 if device.type != 'cuda': print("无法获取非CUDA设备的内存信息,返回默认值") return 6.0 # 返回一个默认值 try: memory_stats = torch.cuda.memory_stats(device) bytes_active = memory_stats['active_bytes.all.current'] bytes_reserved = memory_stats['reserved_bytes.all.current'] bytes_free_cuda, _ = torch.cuda.mem_get_info(device) bytes_inactive_reserved = bytes_reserved - bytes_active bytes_total_available = bytes_free_cuda + bytes_inactive_reserved return bytes_total_available / (1024 ** 3) except Exception as e: print(f"获取CUDA内存信息时出错: {e}") return 6.0 # 返回一个默认值 def move_model_to_device_with_memory_preservation(model, target_device, preserved_memory_gb=0): print(f'Moving {model.__class__.__name__} to {target_device} with preserved memory: {preserved_memory_gb} GB') # 如果是字符串,转换为设备 if isinstance(target_device, str): target_device = torch.device(target_device) # 如果gpu是字符串,转换为设备 gpu_device = gpu if isinstance(gpu_device, str): gpu_device = torch.device(gpu_device) # 如果目标设备是CPU或当前在CPU上,直接移动 if target_device.type == 'cpu' or gpu_device.type == 'cpu': model.to(device=target_device) torch.cuda.empty_cache() if torch.cuda.is_available() else None return for m in model.modules(): if get_cuda_free_memory_gb(target_device) <= preserved_memory_gb: torch.cuda.empty_cache() return if hasattr(m, 'weight'): m.to(device=target_device) model.to(device=target_device) torch.cuda.empty_cache() return def offload_model_from_device_for_memory_preservation(model, target_device, preserved_memory_gb=0): print(f'Offloading {model.__class__.__name__} from {target_device} to preserve memory: {preserved_memory_gb} GB') # 如果是字符串,转换为设备 if isinstance(target_device, str): target_device = torch.device(target_device) # 如果gpu是字符串,转换为设备 gpu_device = gpu if isinstance(gpu_device, str): gpu_device = torch.device(gpu_device) # 如果目标设备是CPU或当前在CPU上,直接处理 if target_device.type == 'cpu' or gpu_device.type == 'cpu': model.to(device=cpu) torch.cuda.empty_cache() if torch.cuda.is_available() else None return for m in model.modules(): if get_cuda_free_memory_gb(target_device) >= preserved_memory_gb: torch.cuda.empty_cache() return if hasattr(m, 'weight'): m.to(device=cpu) model.to(device=cpu) torch.cuda.empty_cache() return def unload_complete_models(*args): for m in gpu_complete_modules + list(args): m.to(device=cpu) print(f'Unloaded {m.__class__.__name__} as complete.') gpu_complete_modules.clear() torch.cuda.empty_cache() if torch.cuda.is_available() else None return def load_model_as_complete(model, target_device, unload=True): # 如果是字符串,转换为设备 if isinstance(target_device, str): target_device = torch.device(target_device) if unload: unload_complete_models() model.to(device=target_device) print(f'Loaded {model.__class__.__name__} to {target_device} as complete.') gpu_complete_modules.append(model) return