Upload 11 files
Browse files- .gitignore +3 -0
- README.md +1 -1
- app.py +51 -0
- ckpt/config.json +13 -0
- ckpt/model_final.pth +3 -0
- losses.py +176 -0
- models.py +88 -0
- requirements.txt +4 -0
- train.py +243 -0
- utils.py +29 -0
.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
venv/
|
| 2 |
+
__pycache__/
|
| 3 |
+
flagged/
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
title: Japanese Ero Voice Classifier
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: yellow
|
| 6 |
sdk: gradio
|
|
|
|
| 1 |
---
|
| 2 |
title: Japanese Ero Voice Classifier
|
| 3 |
+
emoji: 🥰
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: yellow
|
| 6 |
sdk: gradio
|
app.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import json
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
from models import AudioClassifier
|
| 8 |
+
from utils import logger
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
ckpt_dir = Path("ckpt/")
|
| 12 |
+
config_path = ckpt_dir / "config.json"
|
| 13 |
+
assert config_path.exists(), f"config.json not found in {ckpt_dir}"
|
| 14 |
+
config = json.loads((ckpt_dir / "config.json").read_text())
|
| 15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 16 |
+
model = AudioClassifier(device=device, **config["model"]).to(device)
|
| 17 |
+
|
| 18 |
+
# Latest checkpoint
|
| 19 |
+
if (ckpt_dir / "model_final.pth").exists():
|
| 20 |
+
ckpt = ckpt_dir / "model_final.pth"
|
| 21 |
+
else:
|
| 22 |
+
ckpt = sorted(ckpt_dir.glob("*.pth"))[-1]
|
| 23 |
+
logger.info(f"Loading {ckpt}...")
|
| 24 |
+
model.load_state_dict(torch.load(ckpt))
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def classify_audio(audio_file: str):
|
| 28 |
+
logger.info(f"Classifying {audio_file}...")
|
| 29 |
+
output = model.infer_from_file(audio_file)
|
| 30 |
+
logger.success(f"Predicted: {output}")
|
| 31 |
+
return output
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
desc = """
|
| 35 |
+
# NSFW音声分類器
|
| 36 |
+
|
| 37 |
+
出力は以下の3つのクラスの確率です。
|
| 38 |
+
- usual: 通常の音声
|
| 39 |
+
- aegi: 喘ぎ声
|
| 40 |
+
- chupa: チュパ音(フェラやキス音声)
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
with gr.Interface(
|
| 45 |
+
fn=classify_audio,
|
| 46 |
+
inputs=gr.Audio(label="Input audio", type="filepath"),
|
| 47 |
+
outputs=gr.Text(label="Classification"),
|
| 48 |
+
description=desc,
|
| 49 |
+
allow_flagging="never",
|
| 50 |
+
) as iface:
|
| 51 |
+
iface.launch()
|
ckpt/config.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model": {
|
| 3 |
+
"label2id": {
|
| 4 |
+
"usual": 0,
|
| 5 |
+
"aegi": 1,
|
| 6 |
+
"chupa": 2
|
| 7 |
+
},
|
| 8 |
+
"num_hidden_layers": 2,
|
| 9 |
+
"hidden_dim": 128
|
| 10 |
+
},
|
| 11 |
+
"lr": 0.001,
|
| 12 |
+
"lr_decay": 0.996
|
| 13 |
+
}
|
ckpt/model_final.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:67ffab6e224d9c7f9acbeab40892cfda200a88c9dc2ee2714621bc90eed7a4d5
|
| 3 |
+
size 279357
|
losses.py
ADDED
|
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class AsymmetricLoss(nn.Module):
|
| 6 |
+
def __init__(
|
| 7 |
+
self,
|
| 8 |
+
gamma_neg=4,
|
| 9 |
+
gamma_pos=1,
|
| 10 |
+
clip=0.05,
|
| 11 |
+
eps=1e-8,
|
| 12 |
+
disable_torch_grad_focal_loss=True,
|
| 13 |
+
):
|
| 14 |
+
super(AsymmetricLoss, self).__init__()
|
| 15 |
+
|
| 16 |
+
self.gamma_neg = gamma_neg
|
| 17 |
+
self.gamma_pos = gamma_pos
|
| 18 |
+
self.clip = clip
|
| 19 |
+
self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss
|
| 20 |
+
self.eps = eps
|
| 21 |
+
|
| 22 |
+
def forward(self, x, y):
|
| 23 |
+
""" "
|
| 24 |
+
Parameters
|
| 25 |
+
----------
|
| 26 |
+
x: input logits
|
| 27 |
+
y: targets (multi-label binarized vector)
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
# Calculating Probabilities
|
| 31 |
+
x_sigmoid = torch.sigmoid(x)
|
| 32 |
+
xs_pos = x_sigmoid
|
| 33 |
+
xs_neg = 1 - x_sigmoid
|
| 34 |
+
|
| 35 |
+
# Asymmetric Clipping
|
| 36 |
+
if self.clip is not None and self.clip > 0:
|
| 37 |
+
xs_neg = (xs_neg + self.clip).clamp(max=1)
|
| 38 |
+
|
| 39 |
+
# Basic CE calculation
|
| 40 |
+
los_pos = y * torch.log(xs_pos.clamp(min=self.eps))
|
| 41 |
+
los_neg = (1 - y) * torch.log(xs_neg.clamp(min=self.eps))
|
| 42 |
+
loss = los_pos + los_neg
|
| 43 |
+
|
| 44 |
+
# Asymmetric Focusing
|
| 45 |
+
if self.gamma_neg > 0 or self.gamma_pos > 0:
|
| 46 |
+
if self.disable_torch_grad_focal_loss:
|
| 47 |
+
torch.set_grad_enabled(False)
|
| 48 |
+
pt0 = xs_pos * y
|
| 49 |
+
pt1 = xs_neg * (1 - y) # pt = p if t > 0 else 1-p
|
| 50 |
+
pt = pt0 + pt1
|
| 51 |
+
one_sided_gamma = self.gamma_pos * y + self.gamma_neg * (1 - y)
|
| 52 |
+
one_sided_w = torch.pow(1 - pt, one_sided_gamma)
|
| 53 |
+
if self.disable_torch_grad_focal_loss:
|
| 54 |
+
torch.set_grad_enabled(True)
|
| 55 |
+
loss *= one_sided_w
|
| 56 |
+
|
| 57 |
+
return -loss.sum()
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class AsymmetricLossOptimized(nn.Module):
|
| 61 |
+
"""Notice - optimized version, minimizes memory allocation and gpu uploading,
|
| 62 |
+
favors inplace operations"""
|
| 63 |
+
|
| 64 |
+
def __init__(
|
| 65 |
+
self,
|
| 66 |
+
gamma_neg=4,
|
| 67 |
+
gamma_pos=1,
|
| 68 |
+
clip=0.05,
|
| 69 |
+
eps=1e-8,
|
| 70 |
+
disable_torch_grad_focal_loss=False,
|
| 71 |
+
):
|
| 72 |
+
super(AsymmetricLossOptimized, self).__init__()
|
| 73 |
+
|
| 74 |
+
self.gamma_neg = gamma_neg
|
| 75 |
+
self.gamma_pos = gamma_pos
|
| 76 |
+
self.clip = clip
|
| 77 |
+
self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss
|
| 78 |
+
self.eps = eps
|
| 79 |
+
|
| 80 |
+
# prevent memory allocation and gpu uploading every iteration, and encourages inplace operations
|
| 81 |
+
self.targets = self.anti_targets = self.xs_pos = self.xs_neg = (
|
| 82 |
+
self.asymmetric_w
|
| 83 |
+
) = self.loss = None
|
| 84 |
+
|
| 85 |
+
def forward(self, x, y):
|
| 86 |
+
""" "
|
| 87 |
+
Parameters
|
| 88 |
+
----------
|
| 89 |
+
x: input logits
|
| 90 |
+
y: targets (multi-label binarized vector)
|
| 91 |
+
"""
|
| 92 |
+
|
| 93 |
+
self.targets = y
|
| 94 |
+
self.anti_targets = 1 - y
|
| 95 |
+
|
| 96 |
+
# Calculating Probabilities
|
| 97 |
+
self.xs_pos = torch.sigmoid(x)
|
| 98 |
+
self.xs_neg = 1.0 - self.xs_pos
|
| 99 |
+
|
| 100 |
+
# Asymmetric Clipping
|
| 101 |
+
if self.clip is not None and self.clip > 0:
|
| 102 |
+
self.xs_neg.add_(self.clip).clamp_(max=1)
|
| 103 |
+
|
| 104 |
+
# Basic CE calculation
|
| 105 |
+
self.loss = self.targets * torch.log(self.xs_pos.clamp(min=self.eps))
|
| 106 |
+
self.loss.add_(self.anti_targets * torch.log(self.xs_neg.clamp(min=self.eps)))
|
| 107 |
+
|
| 108 |
+
# Asymmetric Focusing
|
| 109 |
+
if self.gamma_neg > 0 or self.gamma_pos > 0:
|
| 110 |
+
if self.disable_torch_grad_focal_loss:
|
| 111 |
+
torch.set_grad_enabled(False)
|
| 112 |
+
self.xs_pos = self.xs_pos * self.targets
|
| 113 |
+
self.xs_neg = self.xs_neg * self.anti_targets
|
| 114 |
+
self.asymmetric_w = torch.pow(
|
| 115 |
+
1 - self.xs_pos - self.xs_neg,
|
| 116 |
+
self.gamma_pos * self.targets + self.gamma_neg * self.anti_targets,
|
| 117 |
+
)
|
| 118 |
+
if self.disable_torch_grad_focal_loss:
|
| 119 |
+
torch.set_grad_enabled(True)
|
| 120 |
+
self.loss *= self.asymmetric_w
|
| 121 |
+
|
| 122 |
+
return -self.loss.sum()
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
class ASLSingleLabel(nn.Module):
|
| 126 |
+
"""
|
| 127 |
+
This loss is intended for single-label classification problems
|
| 128 |
+
"""
|
| 129 |
+
|
| 130 |
+
def __init__(self, gamma_pos=0, gamma_neg=4, eps: float = 0.1, reduction="mean"):
|
| 131 |
+
super(ASLSingleLabel, self).__init__()
|
| 132 |
+
|
| 133 |
+
self.eps = eps
|
| 134 |
+
self.logsoftmax = nn.LogSoftmax(dim=-1)
|
| 135 |
+
self.targets_classes = []
|
| 136 |
+
self.gamma_pos = gamma_pos
|
| 137 |
+
self.gamma_neg = gamma_neg
|
| 138 |
+
self.reduction = reduction
|
| 139 |
+
|
| 140 |
+
def forward(self, inputs, target):
|
| 141 |
+
"""
|
| 142 |
+
"input" dimensions: - (batch_size,number_classes)
|
| 143 |
+
"target" dimensions: - (batch_size)
|
| 144 |
+
"""
|
| 145 |
+
num_classes = inputs.size()[-1]
|
| 146 |
+
log_preds = self.logsoftmax(inputs)
|
| 147 |
+
self.targets_classes = torch.zeros_like(inputs).scatter_(
|
| 148 |
+
1, target.long().unsqueeze(1), 1
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
# ASL weights
|
| 152 |
+
targets = self.targets_classes
|
| 153 |
+
anti_targets = 1 - targets
|
| 154 |
+
xs_pos = torch.exp(log_preds)
|
| 155 |
+
xs_neg = 1 - xs_pos
|
| 156 |
+
xs_pos = xs_pos * targets
|
| 157 |
+
xs_neg = xs_neg * anti_targets
|
| 158 |
+
asymmetric_w = torch.pow(
|
| 159 |
+
1 - xs_pos - xs_neg,
|
| 160 |
+
self.gamma_pos * targets + self.gamma_neg * anti_targets,
|
| 161 |
+
)
|
| 162 |
+
log_preds = log_preds * asymmetric_w
|
| 163 |
+
|
| 164 |
+
if self.eps > 0: # label smoothing
|
| 165 |
+
self.targets_classes = self.targets_classes.mul(1 - self.eps).add(
|
| 166 |
+
self.eps / num_classes
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
# loss calculation
|
| 170 |
+
loss = -self.targets_classes.mul(log_preds)
|
| 171 |
+
|
| 172 |
+
loss = loss.sum(dim=-1)
|
| 173 |
+
if self.reduction == "mean":
|
| 174 |
+
loss = loss.mean()
|
| 175 |
+
|
| 176 |
+
return loss
|
models.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
# モデルの定義
|
| 6 |
+
class AudioClassifier(nn.Module):
|
| 7 |
+
def __init__(
|
| 8 |
+
self,
|
| 9 |
+
label2id: dict,
|
| 10 |
+
feature_dim=256,
|
| 11 |
+
hidden_dim=256,
|
| 12 |
+
device="cpu",
|
| 13 |
+
dropout_rate=0.5,
|
| 14 |
+
num_hidden_layers=2,
|
| 15 |
+
):
|
| 16 |
+
super(AudioClassifier, self).__init__()
|
| 17 |
+
self.num_classes = len(label2id)
|
| 18 |
+
self.device = device
|
| 19 |
+
self.label2id = label2id
|
| 20 |
+
self.id2label = {v: k for k, v in self.label2id.items()}
|
| 21 |
+
# 最初の線形層と活性化層を追加
|
| 22 |
+
self.fc1 = nn.Sequential(
|
| 23 |
+
nn.Linear(feature_dim, hidden_dim),
|
| 24 |
+
nn.BatchNorm1d(hidden_dim),
|
| 25 |
+
nn.Mish(),
|
| 26 |
+
nn.Dropout(dropout_rate),
|
| 27 |
+
)
|
| 28 |
+
# 隠れ層の追加
|
| 29 |
+
self.hidden_layers = nn.ModuleList()
|
| 30 |
+
for _ in range(num_hidden_layers):
|
| 31 |
+
layer = nn.Sequential(
|
| 32 |
+
nn.Linear(hidden_dim, hidden_dim),
|
| 33 |
+
nn.BatchNorm1d(hidden_dim),
|
| 34 |
+
nn.Mish(),
|
| 35 |
+
nn.Dropout(dropout_rate),
|
| 36 |
+
)
|
| 37 |
+
self.hidden_layers.append(layer)
|
| 38 |
+
# 最後の層(クラス分類用)
|
| 39 |
+
self.fc_last = nn.Linear(hidden_dim, self.num_classes)
|
| 40 |
+
|
| 41 |
+
def forward(self, x):
|
| 42 |
+
# 最初の層を通過
|
| 43 |
+
x = self.fc1(x)
|
| 44 |
+
|
| 45 |
+
# 隠れ層を順に通過
|
| 46 |
+
for layer in self.hidden_layers:
|
| 47 |
+
x = layer(x)
|
| 48 |
+
|
| 49 |
+
# 最後の分類層
|
| 50 |
+
x = self.fc_last(x)
|
| 51 |
+
return x
|
| 52 |
+
|
| 53 |
+
def infer_from_features(self, features):
|
| 54 |
+
# 特徴量をテンソルに変換
|
| 55 |
+
features = (
|
| 56 |
+
torch.tensor(features, dtype=torch.float32).unsqueeze(0).to(self.device)
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# モデルを評価モードに設定
|
| 60 |
+
self.eval()
|
| 61 |
+
|
| 62 |
+
# モデルの出力を取得
|
| 63 |
+
with torch.no_grad():
|
| 64 |
+
output = self.forward(features)
|
| 65 |
+
|
| 66 |
+
# ソフトマックス関数を適用して確率を計算
|
| 67 |
+
probs = torch.softmax(output, dim=1)
|
| 68 |
+
|
| 69 |
+
# ラベルごとの確率を計算して大きい順に並べ替えて返す
|
| 70 |
+
probs, indices = torch.sort(probs, descending=True)
|
| 71 |
+
probs = probs.cpu().numpy().squeeze()
|
| 72 |
+
indices = indices.cpu().numpy().squeeze()
|
| 73 |
+
return [(self.id2label[i], p) for i, p in zip(indices, probs)]
|
| 74 |
+
|
| 75 |
+
def infer_from_file(self, file_path):
|
| 76 |
+
feature = extract_features(file_path, device=self.device)
|
| 77 |
+
return self.infer_from_features(feature)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
from pyannote.audio import Inference, Model
|
| 81 |
+
|
| 82 |
+
emb_model = Model.from_pretrained("pyannote/wespeaker-voxceleb-resnet34-LM")
|
| 83 |
+
inference = Inference(emb_model, window="whole")
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def extract_features(file_path, device="cpu"):
|
| 87 |
+
inference.to(torch.device(device))
|
| 88 |
+
return inference(file_path)
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
loguru
|
| 3 |
+
pyannote.audio
|
| 4 |
+
torch
|
train.py
ADDED
|
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import json
|
| 3 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
import torch.optim as optim
|
| 11 |
+
|
| 12 |
+
# import torch_optimizer as optim
|
| 13 |
+
import transformers
|
| 14 |
+
from sklearn.metrics import (
|
| 15 |
+
accuracy_score,
|
| 16 |
+
classification_report,
|
| 17 |
+
f1_score,
|
| 18 |
+
precision_score,
|
| 19 |
+
recall_score,
|
| 20 |
+
)
|
| 21 |
+
from torch.optim.lr_scheduler import (
|
| 22 |
+
CosineAnnealingLR,
|
| 23 |
+
CosineAnnealingWarmRestarts,
|
| 24 |
+
ExponentialLR,
|
| 25 |
+
)
|
| 26 |
+
from torch.utils.data import DataLoader, Dataset
|
| 27 |
+
from torch.utils.tensorboard import SummaryWriter
|
| 28 |
+
from tqdm import tqdm
|
| 29 |
+
|
| 30 |
+
from models import AudioClassifier, extract_features
|
| 31 |
+
from losses import AsymmetricLoss, ASLSingleLabel
|
| 32 |
+
|
| 33 |
+
torch.manual_seed(42)
|
| 34 |
+
|
| 35 |
+
label2id = {
|
| 36 |
+
"usual": 0,
|
| 37 |
+
"aegi": 1,
|
| 38 |
+
"chupa": 2,
|
| 39 |
+
# "cry": 3,
|
| 40 |
+
# "laugh": 4,
|
| 41 |
+
# "silent": 5,
|
| 42 |
+
# "unusual": 6,
|
| 43 |
+
}
|
| 44 |
+
id2label = {v: k for k, v in label2id.items()}
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
parser = argparse.ArgumentParser()
|
| 48 |
+
parser.add_argument("--exp_dir", type=str, default="data")
|
| 49 |
+
parser.add_argument("--ckpt_dir", type=str, required=True)
|
| 50 |
+
parser.add_argument("--device", type=str, default="cuda")
|
| 51 |
+
parser.add_argument("--epochs", type=int, default=1000)
|
| 52 |
+
parser.add_argument("--save_every", type=int, default=100)
|
| 53 |
+
|
| 54 |
+
args = parser.parse_args()
|
| 55 |
+
device = args.device
|
| 56 |
+
if not torch.cuda.is_available():
|
| 57 |
+
print("No GPU detected. Using CPU.")
|
| 58 |
+
device = "cpu"
|
| 59 |
+
print(f"Using {device} for training.")
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# データセットの定義
|
| 63 |
+
class AudioDataset(Dataset):
|
| 64 |
+
def __init__(self, file_paths, labels, features):
|
| 65 |
+
self.file_paths = file_paths
|
| 66 |
+
self.labels = labels
|
| 67 |
+
self.features = features
|
| 68 |
+
|
| 69 |
+
def __len__(self):
|
| 70 |
+
return len(self.file_paths)
|
| 71 |
+
|
| 72 |
+
def __getitem__(self, idx):
|
| 73 |
+
return self.features[idx], self.labels[idx]
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def prepare_dataset(directory):
|
| 77 |
+
file_paths = list(Path(directory).rglob("*.npy"))
|
| 78 |
+
if len(file_paths) == 0:
|
| 79 |
+
return [], [], []
|
| 80 |
+
# file_paths = [f for f in file_paths if f.parent.name in label2id]
|
| 81 |
+
|
| 82 |
+
def process(file_path: Path):
|
| 83 |
+
npy_feature = np.load(file_path)
|
| 84 |
+
id = int(label2id[file_path.parent.name])
|
| 85 |
+
return (
|
| 86 |
+
file_path,
|
| 87 |
+
torch.tensor(id, dtype=torch.long).to(device),
|
| 88 |
+
torch.tensor(npy_feature, dtype=torch.float32).to(device),
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
with ThreadPoolExecutor(max_workers=10) as executor:
|
| 92 |
+
results = list(tqdm(executor.map(process, file_paths), total=len(file_paths)))
|
| 93 |
+
|
| 94 |
+
file_paths, labels, features = zip(*results)
|
| 95 |
+
|
| 96 |
+
return file_paths, labels, features
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
print("Preparing dataset...")
|
| 100 |
+
|
| 101 |
+
exp_dir = Path(args.exp_dir)
|
| 102 |
+
train_file_paths, train_labels, train_feats = prepare_dataset(exp_dir / "train")
|
| 103 |
+
val_file_paths, val_labels, val_feats = prepare_dataset(exp_dir / "val")
|
| 104 |
+
|
| 105 |
+
print(f"Train: {len(train_file_paths)}, Val: {len(val_file_paths)}")
|
| 106 |
+
|
| 107 |
+
# データセットとデータローダーの準備
|
| 108 |
+
train_dataset = AudioDataset(train_file_paths, train_labels, train_feats)
|
| 109 |
+
print("Train dataset prepared.")
|
| 110 |
+
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True)
|
| 111 |
+
print("Train loader prepared.")
|
| 112 |
+
if len(val_file_paths) == 0:
|
| 113 |
+
val_dataset = None
|
| 114 |
+
val_loader = None
|
| 115 |
+
print("No validation dataset found.")
|
| 116 |
+
else:
|
| 117 |
+
val_dataset = AudioDataset(val_file_paths, val_labels, val_feats)
|
| 118 |
+
print("Val dataset prepared.")
|
| 119 |
+
val_loader = DataLoader(val_dataset, batch_size=128, shuffle=False)
|
| 120 |
+
print("Val loader prepared.")
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
# モデル、損失関数、最適化アルゴリズムの設定
|
| 124 |
+
config = {
|
| 125 |
+
"model": {
|
| 126 |
+
"label2id": label2id,
|
| 127 |
+
"num_hidden_layers": 2,
|
| 128 |
+
"hidden_dim": 128,
|
| 129 |
+
},
|
| 130 |
+
"lr": 1e-3,
|
| 131 |
+
"lr_decay": 0.996,
|
| 132 |
+
}
|
| 133 |
+
model = AudioClassifier(device="cuda", **config["model"]).to(device)
|
| 134 |
+
model.to(device)
|
| 135 |
+
# criterion = nn.CrossEntropyLoss()
|
| 136 |
+
criterion = ASLSingleLabel(gamma_pos=1, gamma_neg=4)
|
| 137 |
+
optimizer = optim.AdamW(model.parameters(), lr=config["lr"], weight_decay=1e-2)
|
| 138 |
+
scheduler = ExponentialLR(optimizer, gamma=config["lr_decay"])
|
| 139 |
+
# scheduler = transformers.optimization.AdafactorSchedule(optimizer)
|
| 140 |
+
num_epochs = args.epochs
|
| 141 |
+
# scheduler = CosineAnnealingWarmRestarts(optimizer, T_0=10, T_mult=2)
|
| 142 |
+
|
| 143 |
+
print("Start training...")
|
| 144 |
+
current_time = datetime.now().strftime("%b%d_%H-%M-%S")
|
| 145 |
+
ckpt_dir = Path(args.ckpt_dir) / current_time
|
| 146 |
+
ckpt_dir.mkdir(parents=True, exist_ok=True)
|
| 147 |
+
# Save config
|
| 148 |
+
with open(ckpt_dir / "config.json", "w", encoding="utf-8") as f:
|
| 149 |
+
json.dump(config, f, indent=4)
|
| 150 |
+
# 訓練ループ
|
| 151 |
+
save_every = args.save_every
|
| 152 |
+
val_interval = 1
|
| 153 |
+
eval_interval = 1
|
| 154 |
+
|
| 155 |
+
writer = SummaryWriter(ckpt_dir / "logs")
|
| 156 |
+
for epoch in tqdm(range(1, num_epochs + 1)):
|
| 157 |
+
train_loss = 0.0
|
| 158 |
+
model.train() # 訓練モードに設定
|
| 159 |
+
train_labels = []
|
| 160 |
+
train_preds = []
|
| 161 |
+
for inputs, labels in train_loader:
|
| 162 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
| 163 |
+
|
| 164 |
+
# 順伝播、損失の計算、逆伝播、パラメータ更新
|
| 165 |
+
optimizer.zero_grad()
|
| 166 |
+
outputs = model(inputs)
|
| 167 |
+
loss = criterion(outputs.squeeze(), labels)
|
| 168 |
+
loss.backward()
|
| 169 |
+
optimizer.step()
|
| 170 |
+
train_loss += loss.item()
|
| 171 |
+
|
| 172 |
+
# 評価指標の計算
|
| 173 |
+
if epoch % eval_interval == 0:
|
| 174 |
+
with torch.no_grad():
|
| 175 |
+
# 最も高い確率を持つクラスのインデックスを取得
|
| 176 |
+
_, predictions = torch.max(outputs, 1)
|
| 177 |
+
|
| 178 |
+
# 実際のラベルと予測値をリストに追加
|
| 179 |
+
train_labels.extend(labels.cpu().numpy())
|
| 180 |
+
train_preds.extend(predictions.cpu().numpy())
|
| 181 |
+
|
| 182 |
+
scheduler.step()
|
| 183 |
+
if epoch % eval_interval == 0:
|
| 184 |
+
# 訓練データに対する評価指標の計算
|
| 185 |
+
accuracy = accuracy_score(train_labels, train_preds)
|
| 186 |
+
precision = precision_score(train_labels, train_preds, average="macro")
|
| 187 |
+
recall = recall_score(train_labels, train_preds, average="macro")
|
| 188 |
+
f1 = f1_score(train_labels, train_preds, average="macro")
|
| 189 |
+
report = classification_report(
|
| 190 |
+
train_labels, train_preds, target_names=list(label2id.keys())
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
writer.add_scalar("train/Accuracy", accuracy, epoch)
|
| 194 |
+
writer.add_scalar("train/Precision", precision, epoch)
|
| 195 |
+
writer.add_scalar("train/Recall", recall, epoch)
|
| 196 |
+
writer.add_scalar("train/F1", f1, epoch)
|
| 197 |
+
|
| 198 |
+
writer.add_scalar("Loss/train", train_loss / len(train_loader), epoch)
|
| 199 |
+
writer.add_scalar("Learning Rate", optimizer.param_groups[0]["lr"], epoch)
|
| 200 |
+
|
| 201 |
+
if epoch % save_every == 0:
|
| 202 |
+
torch.save(model.state_dict(), ckpt_dir / f"model_{epoch}.pth")
|
| 203 |
+
|
| 204 |
+
if epoch % val_interval != 0 or val_loader is None:
|
| 205 |
+
tqdm.write(f"loss: {train_loss / len(train_loader):4f}\n{report}")
|
| 206 |
+
continue
|
| 207 |
+
model.eval() # 評価モードに設定
|
| 208 |
+
val_labels = []
|
| 209 |
+
val_preds = []
|
| 210 |
+
val_loss = 0.0
|
| 211 |
+
with torch.no_grad():
|
| 212 |
+
for inputs, labels in val_loader:
|
| 213 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
| 214 |
+
outputs = model(inputs)
|
| 215 |
+
# 最も高い確率を持つクラスのインデックスを取得
|
| 216 |
+
_, predictions = torch.max(outputs, 1)
|
| 217 |
+
val_labels.extend(labels.cpu().numpy())
|
| 218 |
+
val_preds.extend(predictions.cpu().numpy())
|
| 219 |
+
loss = criterion(outputs.squeeze(), labels)
|
| 220 |
+
val_loss += loss.item()
|
| 221 |
+
|
| 222 |
+
# 評価指標の計算
|
| 223 |
+
accuracy = accuracy_score(val_labels, val_preds)
|
| 224 |
+
precision = precision_score(val_labels, val_preds, average="macro")
|
| 225 |
+
recall = recall_score(val_labels, val_preds, average="macro")
|
| 226 |
+
f1 = f1_score(val_labels, val_preds, average="macro")
|
| 227 |
+
report = classification_report(
|
| 228 |
+
val_labels, val_preds, target_names=list(label2id.keys())
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
writer.add_scalar("Loss/val", val_loss / len(val_loader), epoch)
|
| 232 |
+
writer.add_scalar("val/Accuracy", accuracy, epoch)
|
| 233 |
+
writer.add_scalar("val/Precision", precision, epoch)
|
| 234 |
+
writer.add_scalar("val/Recall", recall, epoch)
|
| 235 |
+
writer.add_scalar("val/F1", f1, epoch)
|
| 236 |
+
|
| 237 |
+
tqdm.write(
|
| 238 |
+
f"loss: {train_loss / len(train_loader):4f}, val loss: {val_loss / len(val_loader):4f}, "
|
| 239 |
+
f"acc: {accuracy:4f}, f1: {f1:4f}, prec: {precision:4f}, recall: {recall:4f}\n{report}"
|
| 240 |
+
)
|
| 241 |
+
# tqdm.write(report)
|
| 242 |
+
# Save
|
| 243 |
+
torch.save(model.state_dict(), ckpt_dir / "model_final.pth")
|
utils.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
import wave
|
| 4 |
+
from pydub import AudioSegment
|
| 5 |
+
import loguru
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def is_audio_file(file: Path):
|
| 9 |
+
return file.suffix.lower() in [".wav", ".mp3", ".ogg"]
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def get_audio_duration_ms(file_path):
|
| 13 |
+
try:
|
| 14 |
+
with wave.open(str(file_path), "r") as wav_file:
|
| 15 |
+
return wav_file.getnframes() / wav_file.getframerate() * 1000
|
| 16 |
+
except wave.Error as e:
|
| 17 |
+
audio = AudioSegment.from_file(file_path)
|
| 18 |
+
return len(audio)
|
| 19 |
+
except Exception as e:
|
| 20 |
+
raise e
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
logger = loguru.logger
|
| 24 |
+
logger.remove()
|
| 25 |
+
|
| 26 |
+
log_format = (
|
| 27 |
+
"<g>{time:MM-DD HH:mm:ss}</g> |<lvl>{level:^8}</lvl>| {file}:{line} | {message}"
|
| 28 |
+
)
|
| 29 |
+
logger.add(sys.stdout, format=log_format)
|