File size: 8,211 Bytes
44d8da2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


import os
import warnings
import shutil

import torch
from transformers import PretrainedConfig, AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig

from .projector import load_mm_projector
from .videollama3_qwen2 import Videollama3Qwen2ForCausalLM, Videollama3Qwen2Config


VLLMs = {
    "videollama3_qwen2": Videollama3Qwen2ForCausalLM,
}

VLLMConfigs = {
    "videollama3_qwen2": Videollama3Qwen2Config,
}


def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", **kwargs):
    if 'token' in kwargs:
        token = kwargs['token']
    else:
        token = None

    # NOTE: auto device_map by default
    # if want to put model into a single device, you can set device_map={"": "cuda:0"}
    kwargs = {"device_map": device_map, **kwargs}

    config = AutoConfig.from_pretrained(model_path)
    config._attn_implementation = kwargs.pop('attn_implementation', "flash_attention_2") # default to flash_attention_2

    torch_dtype = config.torch_dtype if hasattr(config, "torch_dtype") else kwargs.pop('torch_dtype', torch.float16)

    if load_8bit:
        kwargs['load_in_8bit'] = True
    elif load_4bit:
        # NOTE: High-version Transformers will report: """ValueError: You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing `quantization_config` argument at the same time."""
        # kwargs['load_in_4bit'] = True
        kwargs['quantization_config'] = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch_dtype,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type='nf4'
        )
    else:
        kwargs['torch_dtype'] = torch_dtype

    # judge model type
    model_type = config.model_type if hasattr(config, "model_type") else kwargs.pop('model_type', "videollama3_qwen2")

    # judge pretrain/finetune
    is_alignment = getattr(config, "tune_mm_mlp_adapter", False) or getattr(config, "is_alignment", False)

    # NOTE: lora/qlora model loading
    if 'lora' in model_name.lower() or 'qlora' in model_name.lower():
        cfg_pretrained = PretrainedConfig.from_pretrained(model_path, token=token)
        # NOTE: AutoConfig will modify `_name_or_path` property to `model_path` if `model_path` is not None.
        # cfg_pretrained = AutoConfig.from_pretrained(model_path, token=token)
        model_base = model_base if model_base is not None else cfg_pretrained._name_or_path

        # NOTE: remove qlora training quantization config 
        if hasattr(lora_cfg_pretrained, 'quantization_config'):
            del lora_cfg_pretrained.quantization_config
        tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False, token=token)
        print('Loading VideoLLaMA from base model...')

        if 'qwen2' in model_base.lower():
            model = Videollama3Qwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
        else:
            model = Videollama3Qwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)

        token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
        if model.lm_head.weight.shape[0] != token_num:
            model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
            model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))

        print('Loading additional VideoLLaMA weights...')
        if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
            non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
        else:
            # this is probably from HF Hub
            from huggingface_hub import hf_hub_download
            def load_from_hf(repo_id, filename, subfolder=None):
                cache_file = hf_hub_download(
                    repo_id=repo_id,
                    filename=filename,
                    subfolder=subfolder)
                return torch.load(cache_file, map_location='cpu')
            non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
        non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
        if any(k.startswith('model.model.') for k in non_lora_trainables):
            non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
        model.load_state_dict(non_lora_trainables, strict=False)

        from peft import PeftModel
        print('Loading LoRA weights...')
        model = PeftModel.from_pretrained(model, model_path)
        print('Merging LoRA weights...')
        model = model.merge_and_unload()
        print('Model is loaded...')
    elif model_base is not None or '-base' in model_name.lower() or is_alignment:
        # NOTE: Base/Pretrain model loading
        print('Loading VideoLLaMA 2 from base model...')
        cfg_pretrained = PretrainedConfig.from_pretrained(model_path, token=token)
        # NOTE: AutoConfig will modify `_name_or_path` property to `model_path` if `model_path` is not None.
        # cfg_pretrained = AutoConfig.from_pretrained(model_path, token=token)
        model_base = model_base if model_base is not None else cfg_pretrained._name_or_path

        tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False, token=token)

        if model_type in ['videollama3', 'videollama3_qwen2']:
            model = Videollama3Qwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
        else:
            model = Videollama3Qwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)

        # NOTE; loading vision-language projector
        # * old codes for loading local mm_projector.bin
        # mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
        # mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
        # model.load_state_dict(mm_projector_weights, strict=False)
        # * new codes which supports loading mm_projector.bin both offline and online 
        mm_projector_weights = load_mm_projector(model_path, token=token)
        model.load_state_dict(mm_projector_weights, strict=False)
    elif 'videollama' in model_type:
        # NOTE: SFT model loading
        print(model_path)
        tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, token=token)

        if model_type in ['videollama3_qwen2']:
            model = Videollama3Qwen2ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
        else:
            model = Videollama3Qwen2ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
    else:
        tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, token=token)
        model = AutoModelForCausalLM.from_pretrained(model_path, config=config, **kwargs)

    processor = None

    if "videollama" in model_type:
        vision_encoder = model.get_vision_encoder()
        processor = vision_encoder.image_processor

    if hasattr(model.config, "max_sequence_length"):
        context_len = model.config.max_sequence_length
    else:
        context_len = 2048

    return tokenizer, model, processor, context_len