Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,874 Bytes
44d8da2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import os
import copy
import math
import warnings
import shutil
from functools import partial
import torch
from .model import load_pretrained_model
from .model.processor import Videollama3Processor
from .mm_utils import load_images, process_images, load_video, process_video, tokenizer_multimodal_token, get_model_name_from_path, KeywordsStoppingCriteria, resize_image_mask
from .constants import NUM_FRAMES, DEFAULT_IMAGE_TOKEN, DEFAULT_VIDEO_TOKEN, MODAL_INDEX_MAP, STREAM_START_TOKEN, STREAM_END_TOKEN
from videollama3.constants import REGION_TOKEN
from transformers import TextIteratorStreamer
from threading import Thread
def disable_torch_init():
"""
Disable the redundant torch default initialization to accelerate model creation.
"""
import torch
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
def model_init(model_path=None, **kwargs):
model_path = "DAMO-NLP-SG/VideoLLaMA2-7B" if model_path is None else model_path
model_name = get_model_name_from_path(model_path)
tokenizer, model, processor, context_len = load_pretrained_model(model_path, None, model_name, **kwargs)
if tokenizer.pad_token is None and tokenizer.unk_token is not None:
tokenizer.pad_token = tokenizer.unk_token
aspect_ratio = model.config.image_aspect_ratio if hasattr(model.config, "image_aspect_ratio") else "pad"
image_size = model.config.image_size if hasattr(model.config, "image_size") else 384
# NOTE: If num_frames is None, the frame sampling mode is "fps". If num_frames is not None, the frame sampling mode is "uniform".
# num_frames = model.config.num_frames
model.config.region_token_index = tokenizer.convert_tokens_to_ids(REGION_TOKEN)
processor = {
'image': load_images,
'video': load_video,
'text': None
}
return model, processor, tokenizer
def get_model_output(images_or_videos, instruct, model, tokenizer, modal='video', **kwargs):
streaming = kwargs.pop('streaming', False)
if streaming:
return mm_infer(images_or_videos, instruct, model, tokenizer, modal, streaming=True, **kwargs)
else:
output = mm_infer(images_or_videos, instruct, model, tokenizer, modal, streaming=False, **kwargs)
return next(output)
def mm_infer(images_or_videos, instruct, model, tokenizer, modal='video', **kwargs):
"""inference api of VideoLLaMA2 for video understanding.
Args:
model: VideoLLaMA2 model.
images_or_videos (torch.Tensor): image tensor (1, C, H, W) / video tensor (T, C, H, W).
instruct (str): text instruction for understanding video.
tokenizer: tokenizer.
do_sample (bool): whether to sample.
modal (str): inference modality.
Returns:
str: response of the model.
"""
mask_ids = kwargs.pop('mask_ids', None)
masks = kwargs.pop('masks', None)
streaming = kwargs.pop('streaming', False)
if modal == 'image':
modal_token = DEFAULT_IMAGE_TOKEN
images = images_or_videos
additional_frames = images.copy()
timestamps = None
elif modal == 'video':
modal_token = DEFAULT_VIDEO_TOKEN
images, timestamps, additional_frames = images_or_videos
elif modal == 'text':
modal_token = ''
else:
raise ValueError(f"Unsupported modal: {modal}")
vlprocessor = Videollama3Processor(model.get_vision_encoder().image_processor, tokenizer)
vlprocessor.tokenizer.add_tokens([DEFAULT_IMAGE_TOKEN, STREAM_START_TOKEN, STREAM_END_TOKEN], special_tokens=True)
model.config.image_token_index = vlprocessor.tokenizer.convert_tokens_to_ids(DEFAULT_IMAGE_TOKEN)
if masks is not None:
additional_frames, masks, mask_nums = resize_image_mask(additional_frames, masks, mask_ids)
for idx in range(len(mask_nums)):
instruct = instruct.replace('<region>', "["+REGION_TOKEN*mask_nums[idx]+"]", 1)
additional_images_dict = vlprocessor._process_image(additional_frames, image_downsampling=1)
additional_images = additional_images_dict['images']
# import pdb
# pdb.set_trace()
# flatten_patches1 = additional_images[0].reshape(26, 46, 3, -1)
# from matplotlib import pyplot as plt
# plt.imshow(flatten_patches1[:,:,:,0])
# plt.savefig('16.png')
additional_images_thws = additional_images_dict['grid_thws']
additional_images = (additional_images, additional_images_thws)
else:
additional_images = None
# 1. text preprocess (tag process & generate prompt).
if isinstance(instruct, str):
messages = [{'role': 'user', 'content': instruct}]
elif isinstance(instruct, list):
messages = copy.deepcopy(instruct)
else:
raise ValueError(f"Unsupported type of instruct: {type(instruct)}")
if all(not modal_token in message["content"] for message in messages):
warnings.warn(f"Image tag not found in the conversation, add it automatically at the beginning!")
messages[0]["content"] = modal_token + messages[0]["content"]
converted_messages = []
for message in messages:
chunks = message["content"].split(modal_token)
converted_messages.append({
"role": "user",
"content": []
})
for chunk_idx in range(1, 2 * len(chunks)):
if chunk_idx % 2 == 1:
chunk = chunks[chunk_idx // 2].strip()
converted_messages[-1]["content"].append({"type": "text", "text": chunk}) if chunk else None
else:
if modal == 'image':
converted_messages[-1]["content"].append({"type": "image"})
elif modal == 'video':
converted_messages[-1]["content"].append({"type": "video", "num_frames": len(images), "time": timestamps})
messages = converted_messages
# 2. vision preprocess (load & transform image or video).
if model.config.model_type in ['videollama3_mistral', 'videollama3_mixtral']:
system_message = [
{'role': 'system', 'content': (
"""<<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature."""
"""\n"""
"""If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n<</SYS>>""")
}
]
else:
system_message = []
image_downsampling = kwargs.get('image_downsampling', model.config.spatial_merge_size)
# TODO: attention mask?
messages = system_message + messages
data_dict = vlprocessor(
images=images,
text=messages,
image_downsampling=image_downsampling,
return_tensors="pt",
)
torch_dtype = model.config.torch_dtype if hasattr(model.config, "torch_dtype") else torch.float16
images = [x.to(torch_dtype).cuda(non_blocking=True) for x in data_dict["images"]]
grid_thws = [x.cuda(non_blocking=True) for x in data_dict["grid_thws"]]
# 3. generate response according to visual signals and prompts.
keywords = [tokenizer.eos_token]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, data_dict["input_ids"])
stop_str = tokenizer.eos_token
do_sample = kwargs.get('do_sample', False)
temperature = kwargs.get('temperature', 0.2 if do_sample else 0.0)
top_p = kwargs.get('top_p', 0.9)
max_new_tokens = kwargs.get('max_new_tokens', 2048)
if not streaming:
with torch.inference_mode():
output_ids = model.generate(
# input_ids,
# attention_mask=attention_masks,
# images=images,
data_dict["input_ids"].cuda(),
attention_mask=data_dict["attention_mask"].cuda(),
images=[(modal, images, grid_thws)],
do_sample=do_sample,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
use_cache=True,
stopping_criteria=[stopping_criteria],
pad_token_id=tokenizer.eos_token_id,
additional_images=[additional_images],
masks=[masks],
)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
yield outputs
else:
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
inputs=data_dict["input_ids"].cuda(),
attention_mask=data_dict["attention_mask"].cuda(),
images=[(modal, images, grid_thws)],
do_sample=do_sample,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
use_cache=True,
stopping_criteria=[stopping_criteria],
pad_token_id=tokenizer.eos_token_id,
additional_images=[additional_images],
masks=[masks],
streamer=streamer
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
if stop_str in generated_text:
generated_text = generated_text[:generated_text.find(stop_str)]
break
yield new_text
thread.join()
|