File size: 9,874 Bytes
44d8da2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import copy
import math
import warnings
import shutil
from functools import partial

import torch

from .model import load_pretrained_model
from .model.processor import Videollama3Processor
from .mm_utils import load_images, process_images, load_video, process_video, tokenizer_multimodal_token, get_model_name_from_path, KeywordsStoppingCriteria, resize_image_mask
from .constants import NUM_FRAMES, DEFAULT_IMAGE_TOKEN, DEFAULT_VIDEO_TOKEN, MODAL_INDEX_MAP, STREAM_START_TOKEN, STREAM_END_TOKEN
from videollama3.constants import REGION_TOKEN
from transformers import TextIteratorStreamer
from threading import Thread

def disable_torch_init():
    """
    Disable the redundant torch default initialization to accelerate model creation.
    """
    import torch
    setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
    setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
    

def model_init(model_path=None, **kwargs):
    model_path = "DAMO-NLP-SG/VideoLLaMA2-7B" if model_path is None else model_path
    model_name = get_model_name_from_path(model_path)
    tokenizer, model, processor, context_len = load_pretrained_model(model_path, None, model_name, **kwargs)

    if tokenizer.pad_token is None and tokenizer.unk_token is not None:
        tokenizer.pad_token = tokenizer.unk_token

    aspect_ratio = model.config.image_aspect_ratio if hasattr(model.config, "image_aspect_ratio") else "pad"
    image_size = model.config.image_size if hasattr(model.config, "image_size") else 384
    # NOTE: If num_frames is None, the frame sampling mode is "fps". If num_frames is not None, the frame sampling mode is "uniform". 
    # num_frames = model.config.num_frames
    model.config.region_token_index = tokenizer.convert_tokens_to_ids(REGION_TOKEN)
    processor = {
        'image': load_images,
        'video': load_video,
        'text':  None
    }

    return model, processor, tokenizer


def get_model_output(images_or_videos, instruct, model, tokenizer, modal='video', **kwargs):
    streaming = kwargs.pop('streaming', False)
    if streaming:
        return mm_infer(images_or_videos, instruct, model, tokenizer, modal, streaming=True, **kwargs)
    else:
        output = mm_infer(images_or_videos, instruct, model, tokenizer, modal, streaming=False, **kwargs)
        return next(output)


def mm_infer(images_or_videos, instruct, model, tokenizer, modal='video', **kwargs):
    """inference api of VideoLLaMA2 for video understanding.

    Args:
        model: VideoLLaMA2 model.
        images_or_videos (torch.Tensor): image tensor (1, C, H, W) / video tensor (T, C, H, W).
        instruct (str): text instruction for understanding video.
        tokenizer: tokenizer.
        do_sample (bool): whether to sample.
        modal (str): inference modality.
    Returns:
        str: response of the model.
    """
    mask_ids = kwargs.pop('mask_ids', None)
    masks = kwargs.pop('masks', None)
    streaming = kwargs.pop('streaming', False)
    if modal == 'image':
        modal_token = DEFAULT_IMAGE_TOKEN
        images = images_or_videos
        additional_frames = images.copy()
        timestamps = None
    elif modal == 'video':
        modal_token = DEFAULT_VIDEO_TOKEN
        images, timestamps, additional_frames = images_or_videos
    elif modal == 'text':
        modal_token = ''
    else:
        raise ValueError(f"Unsupported modal: {modal}")

    vlprocessor = Videollama3Processor(model.get_vision_encoder().image_processor, tokenizer)
    vlprocessor.tokenizer.add_tokens([DEFAULT_IMAGE_TOKEN, STREAM_START_TOKEN, STREAM_END_TOKEN], special_tokens=True)

    model.config.image_token_index = vlprocessor.tokenizer.convert_tokens_to_ids(DEFAULT_IMAGE_TOKEN)

    if masks is not None:
        additional_frames, masks, mask_nums = resize_image_mask(additional_frames, masks, mask_ids)

        for idx in range(len(mask_nums)):
            instruct = instruct.replace('<region>', "["+REGION_TOKEN*mask_nums[idx]+"]", 1)


        additional_images_dict = vlprocessor._process_image(additional_frames, image_downsampling=1) 
        additional_images = additional_images_dict['images']
        # import pdb 
        # pdb.set_trace()


        # flatten_patches1 = additional_images[0].reshape(26, 46, 3, -1)
        # from matplotlib import pyplot as plt
        # plt.imshow(flatten_patches1[:,:,:,0])
        # plt.savefig('16.png')

        additional_images_thws = additional_images_dict['grid_thws']
        additional_images = (additional_images, additional_images_thws)
    
    else:
        additional_images = None
        

    # 1. text preprocess (tag process & generate prompt).
    if isinstance(instruct, str):
        messages = [{'role': 'user', 'content': instruct}]
    elif isinstance(instruct, list):
        messages = copy.deepcopy(instruct)
    else:
        raise ValueError(f"Unsupported type of instruct: {type(instruct)}")

    if all(not modal_token in message["content"] for message in messages):
        warnings.warn(f"Image tag not found in the conversation, add it automatically at the beginning!")
        messages[0]["content"] = modal_token + messages[0]["content"]

    converted_messages = []
    for message in messages:
        chunks = message["content"].split(modal_token)
        converted_messages.append({
            "role": "user",
            "content": []
        })

        for chunk_idx in range(1, 2 * len(chunks)):
            if chunk_idx % 2 == 1:
                chunk = chunks[chunk_idx // 2].strip()
                converted_messages[-1]["content"].append({"type": "text",  "text": chunk}) if chunk else None
            else:
                if modal == 'image':
                    converted_messages[-1]["content"].append({"type": "image"})
                elif modal == 'video':
                    converted_messages[-1]["content"].append({"type": "video", "num_frames": len(images), "time": timestamps})

    messages = converted_messages

    # 2. vision preprocess (load & transform image or video).
    if model.config.model_type in ['videollama3_mistral', 'videollama3_mixtral']:
        system_message = [
            {'role': 'system', 'content': (
            """<<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature."""
            """\n"""
            """If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n<</SYS>>""")
            }
        ]
    else:
        system_message = []

    image_downsampling = kwargs.get('image_downsampling', model.config.spatial_merge_size)
    # TODO: attention mask?
    messages = system_message + messages
    data_dict = vlprocessor(
        images=images,
        text=messages,
        image_downsampling=image_downsampling,
        return_tensors="pt",
    )

    torch_dtype = model.config.torch_dtype if hasattr(model.config, "torch_dtype") else torch.float16

    images = [x.to(torch_dtype).cuda(non_blocking=True) for x in data_dict["images"]]
    grid_thws = [x.cuda(non_blocking=True) for x in data_dict["grid_thws"]]

    # 3. generate response according to visual signals and prompts. 
    keywords = [tokenizer.eos_token]
    stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, data_dict["input_ids"])
    stop_str = tokenizer.eos_token

    do_sample = kwargs.get('do_sample', False)
    temperature = kwargs.get('temperature', 0.2 if do_sample else 0.0)
    top_p = kwargs.get('top_p', 0.9)
    max_new_tokens = kwargs.get('max_new_tokens', 2048)
    if not streaming:
        with torch.inference_mode():
            output_ids = model.generate(
                # input_ids,
                # attention_mask=attention_masks,
                # images=images,
                data_dict["input_ids"].cuda(),
                attention_mask=data_dict["attention_mask"].cuda(),
                images=[(modal, images, grid_thws)],
                do_sample=do_sample,
                temperature=temperature,
                max_new_tokens=max_new_tokens,
                top_p=top_p,
                use_cache=True,
                stopping_criteria=[stopping_criteria],
                pad_token_id=tokenizer.eos_token_id,
                additional_images=[additional_images],
                masks=[masks],
            )

        outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()

        yield outputs

    else:
        streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) 
        generation_kwargs = dict(
            inputs=data_dict["input_ids"].cuda(),
            attention_mask=data_dict["attention_mask"].cuda(),
            images=[(modal, images, grid_thws)],
            do_sample=do_sample,
            temperature=temperature,
            max_new_tokens=max_new_tokens,
            top_p=top_p,
            use_cache=True,
            stopping_criteria=[stopping_criteria],
            pad_token_id=tokenizer.eos_token_id,
            additional_images=[additional_images],
            masks=[masks],
            streamer=streamer
        )

        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
        
        generated_text = ""
        for new_text in streamer:
            generated_text += new_text
            if stop_str in generated_text:
                generated_text = generated_text[:generated_text.find(stop_str)]
                break
            yield new_text
        
        thread.join()