Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,211 Bytes
44d8da2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import warnings
import shutil
import torch
from transformers import PretrainedConfig, AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
from .projector import load_mm_projector
from .videollama3_qwen2 import Videollama3Qwen2ForCausalLM, Videollama3Qwen2Config
VLLMs = {
"videollama3_qwen2": Videollama3Qwen2ForCausalLM,
}
VLLMConfigs = {
"videollama3_qwen2": Videollama3Qwen2Config,
}
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", **kwargs):
if 'token' in kwargs:
token = kwargs['token']
else:
token = None
# NOTE: auto device_map by default
# if want to put model into a single device, you can set device_map={"": "cuda:0"}
kwargs = {"device_map": device_map, **kwargs}
config = AutoConfig.from_pretrained(model_path)
config._attn_implementation = kwargs.pop('attn_implementation', "flash_attention_2") # default to flash_attention_2
torch_dtype = config.torch_dtype if hasattr(config, "torch_dtype") else kwargs.pop('torch_dtype', torch.float16)
if load_8bit:
kwargs['load_in_8bit'] = True
elif load_4bit:
# NOTE: High-version Transformers will report: """ValueError: You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing `quantization_config` argument at the same time."""
# kwargs['load_in_4bit'] = True
kwargs['quantization_config'] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4'
)
else:
kwargs['torch_dtype'] = torch_dtype
# judge model type
model_type = config.model_type if hasattr(config, "model_type") else kwargs.pop('model_type', "videollama3_qwen2")
# judge pretrain/finetune
is_alignment = getattr(config, "tune_mm_mlp_adapter", False) or getattr(config, "is_alignment", False)
# NOTE: lora/qlora model loading
if 'lora' in model_name.lower() or 'qlora' in model_name.lower():
cfg_pretrained = PretrainedConfig.from_pretrained(model_path, token=token)
# NOTE: AutoConfig will modify `_name_or_path` property to `model_path` if `model_path` is not None.
# cfg_pretrained = AutoConfig.from_pretrained(model_path, token=token)
model_base = model_base if model_base is not None else cfg_pretrained._name_or_path
# NOTE: remove qlora training quantization config
if hasattr(lora_cfg_pretrained, 'quantization_config'):
del lora_cfg_pretrained.quantization_config
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False, token=token)
print('Loading VideoLLaMA from base model...')
if 'qwen2' in model_base.lower():
model = Videollama3Qwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
else:
model = Videollama3Qwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
if model.lm_head.weight.shape[0] != token_num:
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
print('Loading additional VideoLLaMA weights...')
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
else:
# this is probably from HF Hub
from huggingface_hub import hf_hub_download
def load_from_hf(repo_id, filename, subfolder=None):
cache_file = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder)
return torch.load(cache_file, map_location='cpu')
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
if any(k.startswith('model.model.') for k in non_lora_trainables):
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
model.load_state_dict(non_lora_trainables, strict=False)
from peft import PeftModel
print('Loading LoRA weights...')
model = PeftModel.from_pretrained(model, model_path)
print('Merging LoRA weights...')
model = model.merge_and_unload()
print('Model is loaded...')
elif model_base is not None or '-base' in model_name.lower() or is_alignment:
# NOTE: Base/Pretrain model loading
print('Loading VideoLLaMA 2 from base model...')
cfg_pretrained = PretrainedConfig.from_pretrained(model_path, token=token)
# NOTE: AutoConfig will modify `_name_or_path` property to `model_path` if `model_path` is not None.
# cfg_pretrained = AutoConfig.from_pretrained(model_path, token=token)
model_base = model_base if model_base is not None else cfg_pretrained._name_or_path
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False, token=token)
if model_type in ['videollama3', 'videollama3_qwen2']:
model = Videollama3Qwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
else:
model = Videollama3Qwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
# NOTE; loading vision-language projector
# * old codes for loading local mm_projector.bin
# mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
# mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
# model.load_state_dict(mm_projector_weights, strict=False)
# * new codes which supports loading mm_projector.bin both offline and online
mm_projector_weights = load_mm_projector(model_path, token=token)
model.load_state_dict(mm_projector_weights, strict=False)
elif 'videollama' in model_type:
# NOTE: SFT model loading
print(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, token=token)
if model_type in ['videollama3_qwen2']:
model = Videollama3Qwen2ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
else:
model = Videollama3Qwen2ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
else:
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, token=token)
model = AutoModelForCausalLM.from_pretrained(model_path, config=config, **kwargs)
processor = None
if "videollama" in model_type:
vision_encoder = model.get_vision_encoder()
processor = vision_encoder.image_processor
if hasattr(model.config, "max_sequence_length"):
context_len = model.config.max_sequence_length
else:
context_len = 2048
return tokenizer, model, processor, context_len
|