Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,379 Bytes
44d8da2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for VideoLLaMA3.
"""
import copy
import math
import warnings
from typing import List, Union, Dict, Optional
import torch
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput, VideoInput
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
import sys
sys.path.append(".")
from videollama3.constants import DEFAULT_IMAGE_TOKEN, IGNORE_INDEX
DEFAULT_CHAT_TEMPLATE = """
{%- set identifier = 'im' %}
{% for message in messages %}
{% if message['role'] == 'stream' %}
{% set identifier = 'stream' %}
{% else %}
{% set identifier = 'im' %}
{% endif %}
{{- '<|' + identifier + '_start|>' + message['role'] + '\n' -}}
{% if message['content'] is string %}
{{- message['content'] + '<|' + identifier + '_end|>\n' -}}
{% else %}
{% for content in message['content'] %}
{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}
{% if 'time' in content %}
{{- 'Time ' + content['time'] | round(1) | string + 's: ' -}}
{% endif %}
"""
DEFAULT_CHAT_TEMPLATE += """
{{- '%s\n' -}}
""" % DEFAULT_IMAGE_TOKEN
DEFAULT_CHAT_TEMPLATE += """
{% elif content['type'] == 'video' or 'video' in content or 'video_url' in content %}
{% for i in range(content['num_frames']) %}
{% if 'time' in content %}
{{- 'Time ' + content['time'][i] | round(1) | string + 's:' -}}
{% endif %}
{% if i < content['num_frames'] - 1 %}
"""
DEFAULT_CHAT_TEMPLATE += """
{{- '%s,' -}}
""" % DEFAULT_IMAGE_TOKEN
DEFAULT_CHAT_TEMPLATE += """
{% else %}
"""
DEFAULT_CHAT_TEMPLATE += """
{{- '%s\n' -}}
""" % DEFAULT_IMAGE_TOKEN
DEFAULT_CHAT_TEMPLATE += """
{% endif %}
{% endfor %}
{% elif 'text' in content %}
{{- content['text'] -}}
{% endif %}
{% endfor %}
{{- '<|' + identifier + '_end|>\n' -}}
{% endif %}
{% endfor %}
{% if add_generation_prompt %}
{{- '<|im_start|>assistant\n' -}}
{% endif %}
"""
class Videollama3ProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
},
}
class Videollama3Processor(ProcessorMixin):
r"""
Modified from Qwen2VLProcessor
Args:
image_processor ([`Qwen2VLImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`Qwen2TokenizerFast`], *optional*):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template"]
image_processor_class = "Qwen2VLImageProcessor"
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
if chat_template is None:
chat_template = DEFAULT_CHAT_TEMPLATE
# super().__init__(image_processor, tokenizer, chat_template=chat_template)
tokenizer.chat_template = chat_template
self.image_processor = image_processor
self.tokenizer = tokenizer
self.generation_prompt = self._infer_generation_prompt()
self.generation_prompt_ids = self.tokenizer.encode(self.generation_prompt, return_tensors="pt")
self.generation_prompt_length = len(self.generation_prompt_ids[0])
self.image_token_id = self.tokenizer.convert_tokens_to_ids(DEFAULT_IMAGE_TOKEN)
self.eos_token_id = self.tokenizer.eos_token_id
def get_generation_prompt(self):
return self.generation_prompt
def get_generation_prompt_ids(self):
return self.generation_prompt_ids
def _infer_generation_prompt(self):
pseudo_message = [{"role": "user", "content": ""}]
instruction = self.tokenizer.apply_chat_template(pseudo_message, tokenize=False, add_generation_prompt=True)
conversation = self.tokenizer.apply_chat_template(pseudo_message, tokenize=False, add_generation_prompt=False)
return instruction.replace(conversation, "")
def _process_text_with_label(
self,
text: List[Dict],
image_grid_thw: torch.Tensor = None,
image_downsampling: Optional[int] = None,
**kwargs,
):
assert kwargs.pop("return_tensors", "pt") == "pt", "Only PyTorch tensors are supported when return_labels=True."
assert isinstance(text[0], dict), "When return_labels=True, text must be a list of messages."
input_ids_list = []
targets_list = []
sample_types_list = []
image_idx = 0
for message_idx, message in enumerate(text):
# 1. set chat template and append image tokens
prompt = self.tokenizer.apply_chat_template([message], tokenize=False, add_generation_prompt=False)
prompt_chunks = prompt.split(DEFAULT_IMAGE_TOKEN)
prompt = []
for chunk_idx in range(len(prompt_chunks) - 1):
prompt.append(prompt_chunks[chunk_idx])
thw = image_grid_thw[image_idx]
prompt.append(DEFAULT_IMAGE_TOKEN * (thw.prod() / image_downsampling**2).long())
image_idx += 1
prompt.append(prompt_chunks[-1])
prompt = "".join(prompt)
input_ids = self.tokenizer.encode(prompt, return_tensors="pt")[0]
input_ids_list.append(input_ids)
targets = torch.full_like(input_ids, IGNORE_INDEX)
sample_types = torch.full_like(input_ids, IGNORE_INDEX)
if message["role"] == "assistant":
targets[self.generation_prompt_length:-1] = input_ids[self.generation_prompt_length:-1].clone()
elif message["role"] == "stream":
diff = torch.diff((input_ids == self.image_token_id).float())
image_end_indices = torch.nonzero(diff < 0)[:, 0]
targets[image_end_indices + 1] = input_ids[image_end_indices + 1]
sample_types = targets.clone()
sample_types[torch.logical_and(sample_types > 0, sample_types != self.eos_token_id)] = 0
targets[-2] = input_ids[-2] # <|im_end|>
# if message_idx > 0 and text[message_idx - 1]["role"] == "stream":
# targets[0] = input_ids[0]
# # TODO: consider non-special tokens
# sample_types[0] = input_ids[0]
targets_list.append(targets)
sample_types_list.append(sample_types)
assert len(image_grid_thw) == image_idx, "Number of images does not match the number of image tokens in the text."
targets = torch.cat(targets_list)
sample_types = torch.cat(sample_types_list)
types, counts = torch.unique(sample_types[sample_types > -1], return_counts=True)
if len(types) > 0:
target_num_samples = counts.amin()
for type_id, type_count in zip(types, counts):
if type_count > target_num_samples:
indices = torch.nonzero(sample_types == type_id)[:, 0]
random_selector = torch.randperm(indices.size(0))[:-target_num_samples]
targets[indices[random_selector]] = IGNORE_INDEX
sample_types[indices[random_selector]] = -1
text_inputs = {
"input_ids": torch.cat(input_ids_list),
"labels": targets,
}
return text_inputs
def _process_text_without_label(
self,
text: Union[List[str], List[Dict]],
image_grid_thw: torch.Tensor = None,
image_downsampling: Optional[int] = None,
**kwargs,
):
if isinstance(text[0], dict):
warnings.warn("Input text is a list of messages. Automatically convert it to a string with 'apply_chat_template' with generation prompt.")
text = [self.tokenizer.apply_chat_template(text, tokenize=False, add_generation_prompt=True)]
image_idx = 0
for i in range(len(text)):
while DEFAULT_IMAGE_TOKEN in text[i]:
thw = image_grid_thw[image_idx]
text[i] = text[i].replace(DEFAULT_IMAGE_TOKEN, "<placeholder>" * (thw.prod() / image_downsampling**2).long(), 1)
image_idx += 1
text[i] = text[i].replace("<placeholder>", DEFAULT_IMAGE_TOKEN)
assert len(image_grid_thw) == image_idx, "Number of images does not match the number of image tokens in the text."
text_inputs = self.tokenizer(text, **kwargs)
return text_inputs
def _process_text(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput], List[Dict]],
image_grid_thw: torch.Tensor = None,
image_downsampling: Optional[int] = None,
return_labels: bool = False,
**kwargs,
):
if not isinstance(text, (list, tuple)):
text = [text]
assert len(text), "At least one text must be provided."
if return_labels:
return self._process_text_with_label(text, image_grid_thw, image_downsampling, **kwargs)
return self._process_text_without_label(text, image_grid_thw, image_downsampling, **kwargs)
def _process_image(
self,
images: ImageInput = None,
image_downsampling: Optional[int] = None,
**kwargs,
):
if image_downsampling is None:
image_downsampling = self.image_processor.merge_size
image_inputs = {
"images": [],
"grid_thws": [],
"image_downsampling": image_downsampling
}
if images is not None and len(images) > 0:
num_images = kwargs.get('num_images', len(images))
if 'num_images' in kwargs:
kwargs.pop('num_images')
for image in images:
outputs = self.image_processor(images=image, num_images=num_images, image_downsampling=image_downsampling, **kwargs)
# images shapes like: [tensor([patches, 1176]), ...]
# grid_thws shapes like: tensor([num_images, 3])
# flatten_patches1 = outputs["pixel_values"].reshape(26, 46, 3, -1)
# from matplotlib import pyplot as plt
# plt.imshow(flatten_patches1[:,:,:,0])
# plt.savefig('9.png')
image_inputs["images"].append(outputs["pixel_values"]) #正常的
# flatten_patches1 = image_inputs["images"][0].reshape(26, 46, 3, -1)
# from matplotlib import pyplot as plt
# plt.imshow(flatten_patches1[:,:,:,0])
# plt.savefig('12.png')
image_inputs["grid_thws"].append(outputs["image_grid_thw"])
return image_inputs
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput], List[Dict]] = None,
images: ImageInput = None,
image_downsampling: Optional[int] = None,
return_labels: bool = False,
**kwargs: Unpack[Videollama3ProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
"""
output_kwargs = self._merge_kwargs(
Videollama3ProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
output_kwargs["text_kwargs"].pop("padding")
output_kwargs["text_kwargs"].pop("padding_side")
image_inputs = self._process_image(images, image_downsampling, **output_kwargs["images_kwargs"])
text_inputs = self._process_text(text, image_inputs["grid_thws"], image_downsampling, return_labels, **output_kwargs["text_kwargs"])
return BatchFeature(data={**text_inputs, **image_inputs})
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|