File size: 5,811 Bytes
44d8da2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#    Copyright 2024 Alibaba DAMO Academy
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

import math
import os
import re

import einops
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import LayerNorm, LayerNorm2d
from timm.models.regnet import RegStage
from transformers import TRANSFORMERS_CACHE


def parse_snapshot_folder(repo_id, cache_dir=None, repo_type="model"):
    revision = "main"
    # 1. parse the downloaded cache folder
    if cache_dir is None:
        cache_dir = TRANSFORMERS_CACHE
    else:
        cache_dir = cache_dir
    object_id = repo_id.replace("/", "--")
    repo_cache = os.path.join(cache_dir, f"{repo_type}s--{object_id}")
    # 2. resolve refs (for instance to convert main to the associated commit sha)
    refs_dir = os.path.join(repo_cache, "refs")
    if os.path.isdir(refs_dir):
        revision_file = os.path.join(refs_dir, revision)
        if os.path.isfile(revision_file):
            with open(revision_file) as f:
                revision = f.read()
    # 3. acquire the snapshot folder
    folder = os.path.join(repo_cache, "snapshots", revision)

    return folder


def load_mm_projector(model_path, cache_dir=None, token=None):
    if os.path.exists(os.path.join(model_path, 'mm_projector.bin')):
        is_local = True
        folder = model_path
    else:
        is_local = False
        folder = parse_snapshot_folder(model_path, cache_dir=cache_dir, repo_type="model")
        if not os.path.exists(os.path.join(folder, 'mm_projector.bin')):
            # downloading from remote repo
            from huggingface_hub import snapshot_download
            snapshot_download(repo_id=model_path, cache_dir=cache_dir, token=token)

    mm_projector_weights = torch.load(os.path.join(folder, 'mm_projector.bin'), map_location='cpu')
    mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
    return mm_projector_weights


class IdentityMap(nn.Module):

    def __init__(self):
        super().__init__()

    def forward(self, x, *args, **kwargs):
        return x

    @property
    def config(self):
        return {"mm_projector_type": 'identity'}


def build_mlp(depth, hidden_size, output_hidden_size):
    modules = [nn.Linear(hidden_size, output_hidden_size)]
    for _ in range(1, depth):
        modules.append(nn.GELU())
        modules.append(nn.Linear(output_hidden_size, output_hidden_size))
    return nn.Sequential(*modules)


class SimSpatialConv(nn.Module):

    def __init__(self, config, downsample=(2, 2), padding=1, depth=1, mlp_depth=2):
        super().__init__()
        self.encoder_hidden_size = encoder_hidden_size = config.mm_hidden_size
        self.output_hidden_size = output_hidden_size = config.hidden_size
        self.downsample = downsample
        self.padding = padding
        self.sampler = nn.Sequential(
            nn.Conv2d(
                in_channels=self.encoder_hidden_size,
                out_channels=4 * self.encoder_hidden_size,
                kernel_size=self.downsample,
                stride=self.downsample,
                padding=self.padding,
                bias=True
            ),
            nn.SiLU(),
        )
        self.readout = build_mlp(mlp_depth, 4 * self.encoder_hidden_size, self.output_hidden_size)

    def forward(self, x):
        hw = int(x.size(1) ** 0.5)
        x = einops.rearrange(x, "b (h w) d -> b d h w", h=hw, w=hw)
        x = self.sampler(x)
        x = einops.rearrange(x, "b d h w -> b (h w) d")
        x = self.readout(x)
        return x

    def cal_proj_size(self, input_size):
        if isinstance(input_size, int):
            input_size = (input_size, input_size)
        height = math.ceil((input_size[0] + self.padding) / self.downsample[0])
        width  = math.ceil((input_size[1] + self.padding) / self.downsample[1])
        return height * width


class MlpGeluProjector(nn.Module):
    def __init__(self, config, projector_type):
        super().__init__()

        mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", projector_type)
        mlp_depth = int(mlp_gelu_match.group(1))

        self.readout = build_mlp(mlp_depth, config.mm_hidden_size, config.hidden_size)

    def forward(self, x):
        x = self.readout(x)
        return x

    def cal_proj_size(self, input_size):
        if isinstance(input_size, int):
            input_size = (input_size, input_size)
        height = input_size[0]
        width  = input_size[1]
        return height * width


def build_vision_projector(config, delay_load=False, **kwargs):
    # videollama3 projector only support image-wise operation now, i.e., prohibit the temporal aggregation
    projector_type = getattr(config, 'mm_projector_type', 'linear')

    if projector_type == "linear":
        # NOTE: for both linear and mlp2x_gelu projector type, mean pooling is adopted to aggreate video features
        return nn.Linear(config.mm_hidden_size, config.hidden_size)
    elif  projector_type == "simp_spatial_conv":
        return SimSpatialConv(config)
    elif projector_type.startswith("mlp"):
        return MlpGeluProjector(config, projector_type)
    if projector_type == 'identity':
        return IdentityMap()

    raise ValueError(f'Unknown projector type: {projector_type}')