Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,476 Bytes
44d8da2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import math
from abc import ABC, abstractmethod
import einops
import torch
import torch.distributed as dist
import torch.nn as nn
import numpy as np
from ..constants import IGNORE_INDEX, MODAL_INDEX_MAP, NUM_FRAMES
from .encoder import build_vision_encoder
from .projector import build_vision_projector, load_mm_projector
from .region_encoder import build_region_encoder
from ..mm_utils import reshape_images_to_raw_grid
def spatial_downsampling(features, grid_thws, strides):
n, c = features.shape
flatten_grid_thws = torch.cat([grid_thw for batch_grid_thws in grid_thws for grid_thw in batch_grid_thws])
split_sizes = [grid_thw.prod() for grid_thw in flatten_grid_thws]
features = torch.split(features, split_sizes)
flatten_strides = [stride for batch_strides in strides for stride in batch_strides]
new_features = []
for feature, grid_thw, stride in zip(features, flatten_grid_thws, flatten_strides):
# NOTE: adapted for reshape in image processor
feature = feature.view(grid_thw[0], grid_thw[1] // stride, grid_thw[2] // stride, stride, stride, c).permute(0, 1, 3, 2, 4, 5)
feature = feature.reshape(grid_thw[0], grid_thw[1], grid_thw[2], c).permute(0, 3, 1, 2)
# NOTE: previous version model is align_corners=True
new_feature = torch.nn.functional.interpolate(feature, (math.ceil(grid_thw[1] / stride), math.ceil(grid_thw[2] / stride)), mode='bilinear')
# new_feature = nn.functional.avg_pool2d(feature, stride)
# new_feature = nn.functional.max_pool2d(feature, stride)
new_features.append(new_feature.permute(0, 2, 3, 1).view(-1, c))
new_features = torch.cat(new_features)
return new_features
class Videollama3MetaModel:
def __init__(self, config):
super(Videollama3MetaModel, self).__init__(config)
if hasattr(config, "vision_encoder") or hasattr(config, "mm_vision_encoder"):
self.vision_encoder = build_vision_encoder(config, delay_load=False)
self.mm_projector = build_vision_projector(config)
self.region_encoder = build_region_encoder(config, self.vision_encoder.hidden_size)
def get_vision_encoder(self):
vision_encoder = getattr(self, 'vision_encoder', None)
if type(vision_encoder) is list:
vision_encoder = vision_encoder[0]
return vision_encoder
def get_mm_projector(self):
return self.mm_projector
def initialize_vision_modules(self, model_args, fsdp=None):
vision_encoder = model_args.vision_encoder
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_projector = model_args.pretrain_mm_projector
self.config.mm_vision_encoder = vision_encoder
if self.get_vision_encoder() is None:
vision_encoder = build_vision_encoder(model_args)
if fsdp is not None and len(fsdp) > 0:
self.vision_encoder = [vision_encoder]
else:
self.vision_encoder = vision_encoder
else:
if fsdp is not None and len(fsdp) > 0:
vision_encoder = self.vision_encoder[0]
else:
vision_encoder = self.vision_encoder
# NOTE: only compatible with delay_load encoder
# vision_encoder.load_model(vision_encoder.cfg_only)
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
self.config.mm_hidden_size = vision_encoder.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
if getattr(self, 'mm_projector', None) is None:
self.mm_projector = build_vision_projector(self.config)
else:
# In case it is frozen by LoRA
for p in self.mm_projector.parameters():
p.requires_grad = True
if pretrain_mm_projector is not None:
if os.path.exists(pretrain_mm_projector):
is_local = True
if os.path.isdir(pretrain_mm_projector):
mm_projector_weights = load_mm_projector(pretrain_mm_projector)
else:
mm_projector_weights = torch.load(pretrain_mm_projector, map_location='cpu')
else:
# Support loading projector weights from remote HuggingFace model hub
is_local = False
pretrain_mm_projector = pretrain_mm_projector.replace('mm_projector.bin', '')
pretrain_mm_projector = pretrain_mm_projector.strip('/').strip('\\').strip()
mm_projector_weights = load_mm_projector(pretrain_mm_projector)
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
# self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
# set strict=False to avoid missing key error regarding bert.embeddings.position_ids
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'), strict=False)
class Videollama3MetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def num_frames(self):
if hasattr(self.config, 'num_frames'):
return self.config.num_frames
else:
return NUM_FRAMES
def spatial_merge_size(self):
if hasattr(self.config, 'spatial_merge_size'):
return self.config.spatial_merge_size
else:
return 1
def get_vision_encoder(self):
return self.get_model().get_vision_encoder()
def get_mm_projector(self):
return self.get_model().get_mm_projector()
def encode_images(self,images, grid_thws, strides):
"""
images shape [b c h w]
"""
images_features = self.get_model().get_vision_encoder()(images, grid_thws=grid_thws, strides=strides)
# images_features = spatial_downsampling(images_features, grid_thws, stride=self.config.spatial_merge_size)
mm_features = spatial_downsampling(images_features, grid_thws, strides=strides)
images_features = self.get_model().mm_projector(mm_features)
return images_features
def prepare_inputs_labels_for_multimodal(
self, input_ids, attention_mask, past_key_values, labels, images, position_ids=None, masks=None, additional_images = None,
):
if self.config.use_token_compression:
return self.prepare_inputs_labels_for_multimodal_with_compression(input_ids, attention_mask, past_key_values, labels, images, position_ids, masks, additional_images)
# # images shape (modal, tensor, flag)
# vision_encoder = self.get_vision_encoder()
# # NOTE: text-only situation
# if vision_encoder is None or images is None or input_ids.shape[1] == 1:
# return input_ids, attention_mask, past_key_values, None, labels, position_ids
# # NOTE: Equvialent to the following code:
# # images_tensor = [image for modal, image, image_flag, grid_thw in images]
# # images_flag = [image_flag for modal, image, image_flag, grid_thw in images]
# # grid_thws = [grid_thw for modal, image, image_flag, grid_thw in images]
# modals, images, grid_thws = zip(*images)
# images_flag = []
# strides = []
# for modal, grid_thw in zip(modals, grid_thws):
# grid_thw = torch.cat(grid_thw)
# stride = self.config.spatial_merge_size if modal == "video" else 1
# num_patches = grid_thw.prod(dim=-1).sum().div(stride**2).long()
# image_flag = torch.full((num_patches, ), 0 if modal == 'text' else 1)
# images_flag.append(image_flag)
# strides.append([stride] * grid_thw.size(0))
# images_flag_tensor = torch.cat(images_flag)
# mm_features = self.encode_images(images, grid_thws, strides)
# mm_features = mm_features[images_flag_tensor.to(mm_features.device) == 1].to(input_ids.device)
# additional_images_list = []
# additional_images_thw = []
# additional_images_strides = []
# for i in range(len(additional_images)):
# additional_images_list.append(torch.from_numpy(np.array(additional_images[0][0])).to(mm_features.dtype).to(mm_features.device))
# additional_images_thw.append(torch.tensor(additional_images[0][1][0]).to(mm_features.device))
# additional_images_strides.append([1]*len(additional_images[0][1][0]))
# image_selected = (input_ids == self.config.image_token_index)
# audio_selected = (input_ids == MODAL_INDEX_MAP['<audio>'])
# input_ids[image_selected] = 0
# input_ids[audio_selected] = 0
# input_embeds = self.get_model().embed_tokens(input_ids).clone()
# B, N, C = input_embeds.shape
# input_embeds = input_embeds.reshape(B * N, C).to(input_ids.device)
# image_selected = image_selected.reshape(B * N)
# audio_selected = audio_selected.reshape(B * N)
# input_embeds[image_selected] = input_embeds[image_selected] * 0.0 + mm_features.reshape(-1, C)
# # replace region token
# mask_selected = (input_ids == self.config.region_token_index)
# if mask_selected.sum()>0:
# additional_images_features = self.get_model().get_vision_encoder()(additional_images_list, grid_thws=[additional_images_thw], strides=additional_images_strides)
# reshaped_features = reshape_images_to_raw_grid(additional_images_features, additional_images_thw)
# mask_additional_image_features = []
# for idx in mask_ids:
# mask_additional_image_features.append(reshaped_features[idx])
# mask_feats = self.model.region_encoder(mask_additional_image_features, masks)
# input_embeds[mask_selected] = input_embeds[mask_selected]*0.0 + mask_feats
# input_embeds = input_embeds.reshape(B, N, C)
# return None, attention_mask, past_key_values, input_embeds, labels, position_ids
def prepare_inputs_labels_for_multimodal_with_compression(
self, input_ids, attention_mask, past_key_values, labels, images, position_ids=None, masks=None, additional_images = None,
):
# images shape (modal, tensor, flag)
vision_encoder = self.get_vision_encoder()
# NOTE: text-only situation
if vision_encoder is None or images is None or input_ids.shape[1] == 1:
return input_ids, attention_mask, past_key_values, None, labels, position_ids
# NOTE: Equvialent to the following code:
# images_tensor = [image for modal, image, image_flag, grid_thw in images]
# images_flag = [image_flag for modal, image, image_flag, grid_thw in images]
# grid_thws = [grid_thw for modal, image, image_flag, grid_thw in images]
modals, images, grid_thws = zip(*images)
images_flag = []
visual_masks = []
strides = []
visual_trunc_masks = []
for modal, image, grid_thw in zip(modals, images, grid_thws):
grid_thw = torch.cat(grid_thw)
stride = self.config.spatial_merge_size if modal == "video" else 1
num_patches = grid_thw.prod(dim=-1).sum().div(stride**2).long()
image_flag = torch.full((num_patches, ), 0 if modal == 'text' else 1)
images_flag.append(image_flag)
strides.append([stride] * grid_thw.size(0))
if modal == "image" or (modal == "video" and len(image) == 1):
visual_masks.append(torch.ones((num_patches,), dtype=torch.bool, device=input_ids.device))
visual_trunc_masks.append(torch.ones((num_patches,), dtype=torch.bool, device=input_ids.device))
elif modal == "video":
# NOTE: video frame compressor
n, h, w = len(image), grid_thw[0][1], grid_thw[0][2]
image = torch.stack(image, dim=0).view(n, (h // stride) * (w // stride), -1)
threshold = 0.1
min_tokens = 1
pixel_diff = image[1:] - image[:-1]
pixel_diff = torch.abs(pixel_diff).mean(dim=-1) * 255
pixel_diff = torch.cat([torch.full_like(pixel_diff[0:1], threshold + 1), pixel_diff], dim=0)
# if dist.get_rank() == 0:
# print(pixel_diff.shape, image.shape)
mask = pixel_diff > threshold
padding_ids = torch.nonzero(mask.sum(dim=1) < min_tokens)[:, 0]
# mask[padding_ids, torch.randperm(min_tokens)] = 1
mask[padding_ids, :min_tokens] = 1
visual_masks.append(mask.flatten())
visual_trunc_masks.append(torch.ones((num_patches,), dtype=torch.bool, device=input_ids.device))
elif modal == "text":
visual_trunc_masks.append(torch.ones((0,), dtype=torch.bool, device=input_ids.device))
images_flag_tensor = torch.cat(images_flag)
mm_features = self.encode_images(images, grid_thws, strides)
mm_features = mm_features[images_flag_tensor.to(mm_features.device) == 1]
additional_images_list = []
additional_images_thw = []
additional_images_strides = []
if additional_images is not None: #and additional_images[0] is not None
for i in range(len(additional_images)):
for img_idx in range(len(additional_images[i][0])):
additional_images_list.append([torch.from_numpy(np.array(additional_images[i][0][img_idx])).to(mm_features.dtype).to(mm_features.device)])
additional_images_thw.append([torch.tensor(np.array(additional_images[i][1][img_idx])).to(mm_features.device)])
additional_images_strides.append([1]*len(additional_images[i][1][img_idx]))
# additional_images_list.append(additional_images[i][0])
# additional_images_thw.append(additional_images[i][1])
# additional_images_strides.append([1]*len(additional_images[i][1]))
# import pdb
# pdb.set_trace()
B, N = input_ids.shape
C = mm_features.shape[-1]
assert B == 1, "Only support batch flattening for now"
input_ids = input_ids.view(B * N)
image_selected = (input_ids == self.config.image_token_index)
audio_selected = (input_ids == MODAL_INDEX_MAP['<audio>'])
if len(visual_masks) > 0:
# if dist.get_rank() == 0:
# print(grid_thws, [x.shape for x in visual_masks])
visual_masks = torch.cat(visual_masks)
# print((visual_masks == 1).sum(), (visual_masks == 0).sum())
mm_features = mm_features[visual_masks]
# text_masks = torch.zeros_like(input_ids, dtype=torch.bool)
# text_masks[~image_selected] = True
text_masks = torch.logical_not(image_selected)
try:
text_masks[image_selected] = visual_masks
except Exception as e:
assert position_ids is not None, "Position ids must be provided when shapes mismatch"
print(
f'warning: {e}, text_masks[image_selected].shape={text_masks[image_selected].shape},',
f'visual_masks.shape={visual_masks.shape}'
)
seq_end_indices = torch.nonzero(position_ids.view(B * N) == 0)[:, 0]
seq_end_indices = seq_end_indices[seq_end_indices > 0]
seq_end_indices = seq_end_indices.tolist()+ [len(input_ids)]
seq_start_indices = [0] + seq_end_indices[:-1]
num_visual_tokens = [
input_ids[start:end].eq(self.config.image_token_index).sum()
for start, end in zip(seq_start_indices, seq_end_indices)
]
for n, mask in zip(num_visual_tokens, visual_trunc_masks):
if len(mask) > 0:
mask[n:] = False
visual_trunc_masks = torch.cat(visual_trunc_masks)
text_masks[image_selected] = visual_masks[visual_trunc_masks]
mm_features = mm_features[visual_trunc_masks[visual_masks]]
else:
text_masks = torch.ones_like(input_ids, dtype=torch.bool)
input_ids = input_ids[text_masks]
if attention_mask is not None:
attention_mask = attention_mask.view(B * N)[text_masks].reshape(1, -1)
if labels is not None:
labels = labels.view(B * N)[text_masks].reshape(1, -1)
if position_ids is not None:
position_ids = position_ids.view(B * N)[text_masks]
pos_start = [0] + torch.nonzero(position_ids == 0)[:, 0].tolist()
pos_end = pos_start[1:] + [len(input_ids)]
position_ids = torch.cat([torch.arange(end - start, device=input_ids.device) for start, end in zip(pos_start, pos_end)])
position_ids = position_ids.reshape(1, -1)
image_selected = (input_ids == self.config.image_token_index)
audio_selected = (input_ids == MODAL_INDEX_MAP['<audio>'])
input_ids[image_selected] = 0
input_ids[audio_selected] = 0
input_embeds = self.get_model().embed_tokens(input_ids).clone()
input_embeds[image_selected] = input_embeds[image_selected] * 0.0 + mm_features.reshape(-1, C)
# replace region token
mask_selected = (input_ids == self.config.region_token_index)
try:
if mask_selected.sum()>0:
# try:
# patches = np.ascontiguousarray(additional_images_list[0][0])
# grid_h = additional_images_thw[0][0][0][1]
# grid_w = additional_images_thw[0][0][0][2]
# patches = patches.reshape(grid_h ,grid_w, 3, 14, 14)
# from matplotlib import pyplot as plt
# plt.imshow(patches[:,:,:,0,0])
# plt.savefig('7.png')
# import pdb
# pdb.set_trace()
# patches = patches.transpose(2, 0, 3, 1, 4)
# reconstructed_image = patches.reshape(3, grid_h*14, grid_w*14).transpose(1, 2, 0)
# from matplotlib import pyplot as plt
# plt.imshow(reconstructed_image)
# plt.savefig('7.png')
# import pdb
# pdb.set_trace()
additional_images_features = self.get_model().get_vision_encoder()(additional_images_list, grid_thws=additional_images_thw, strides=additional_images_strides)
reshaped_features = reshape_images_to_raw_grid(additional_images_features, additional_images_thw)
# mask_additional_image_features = []
# for idx in mask_ids:
# mask_additional_image_features.append(reshaped_features[idx])
mask_feats = self.model.region_encoder(reshaped_features, masks)
input_embeds[mask_selected] = input_embeds[mask_selected]*0.0 + mask_feats
# except: #FIXME
# print('additional_images_list is empty...')
except Exception as exp:
print('error: ', exp)
new_input_embeds = input_embeds.reshape(1, -1, C)
return None, attention_mask, past_key_values, new_input_embeds, labels, position_ids
|