File size: 34,476 Bytes
44d8da2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
#    Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

import math
import copy
import json
import os
import pathlib
import random
import re
import sys
import warnings
import traceback
from packaging import version
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Sequence
import numpy as np

# torch-related packages
# NOTE: torch must be imported before transformers. Otherwise, `Segmentation fault (core dumped)` will occur.
import torch
import transformers
from packaging import version
from datasets import load_dataset, concatenate_datasets
from torch.utils.data import Dataset
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock

sys.path.append('./')

from videollama3.constants import (IGNORE_INDEX, MODAL_INDEX_MAP,
    NUM_FRAMES, DEFAULT_IMAGE_TOKEN, STREAM_MAX_FRAMES,
    STREAM_DOWNSAMPLING, STREAM_FPS, STREAM_IMAGE_SIZE,
    STREAM_START_TOKEN, STREAM_END_TOKEN, REGION_TOKEN)
from videollama3.mm_utils import (load_images, load_video,
                                  tokenizer_multimodal_token, annToMask, resize_image_mask)
from videollama3.model import *
from videollama3.videollama3_trainer import (
    VideoLLaMA3Trainer, find_all_linear_names, get_peft_state_maybe_zero_3,
    get_peft_state_non_lora_maybe_zero_3, safe_save_model_for_hf_trainer)
from videollama3.model.processor import Videollama3Processor

# NOTE: fast tokenizer warning issue: https://github.com/huggingface/transformers/issues/5486
os.environ["TOKENIZERS_PARALLELISM"] = "true"

local_rank = None


def rank0_print(*args):
    if local_rank == 0:
        print(*args)


def set_seed(seed=42):
    """
    Set the random seed for reproducible results.

    :param seed: An integer value to be used as the random seed.
    """
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)  # for multi-GPU setups
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False


def int_with_none(value):
    if value == 'None':
        return None
    return int(value)


@dataclass
class ModelArguments:
    # LLM Arguments
    model_type: Optional[str] = field(default="videollama3", metadata={"help": "Model type selected in the list: " + ", ".join(VLLMs.keys())})
    model_path: Optional[str] = field(default="lmsys/vicuna-7b-v1.5")
    version: Optional[str] = field(default="v1", metadata={"help": "Version of the conversation template."})
    freeze_backbone: bool = field(default=False, metadata={"help": "Whether to freeze the LLM backbone."})
    # Connector Arguments
    mm_projector_type: Optional[str] = field(default='linear')
    pretrain_mm_projector: Optional[str] = field(default=None)
    # Vision tower Arguments
    vision_encoder: Optional[str] = field(default=None)
    mm_vision_select_layer: Optional[int] = field(default=-1)
    mm_vision_select_feature: Optional[str] = field(default="patch")
    mm_attn_implementation: Optional[str] = field(default="flash_attention_2")
    # Token downsampling Arguments
    spatial_merge_size: Optional[int] = field(default=1)
    mm_max_length: Optional[int] = field(default=9477)
    use_token_compression: Optional[bool] = field(default=False)


@dataclass
class DataArguments:
    # Path Arguments
    data_path: List[str] = field(default=None, metadata={"help": "Path to the training data."})
    # image_folder: Optional[str] = field(default=None)
    # video_folder: Optional[str] = field(default=None)
    data_folder: Optional[str] = field(default=None)
    # Loading Arguments
    is_multimodal: bool = False
    fps: Optional[int] = field(default=None)
    max_frames: Optional[int_with_none] = field(default=None)
    # Preprocess Arguments
    image_aspect_ratio: str = 'square'
    use_batch_flattening: bool = field(default=True, metadata={"help": "Whether to flatten the in-batch sequences of variable lengths."})
    dataset_cache_dir: Optional[str] = field(default=None)


@dataclass
class TrainingArguments(transformers.TrainingArguments):
    # shut auto processing (_remove_unused_columns) of transformers Trainer
    remove_unused_columns: bool = field(default=False)

    optim: str = field(default="adamw_torch")
    # Training learning rate Arguments
    vision_encoder_lr: Optional[float] = None
    mm_projector_lr: Optional[float] = None
    llm_lr: Optional[float] = None
    region_encoder_lr: Optional[float] = None
    # Training Data Arguments
    group_by_modality_length: bool = field(default=False)
    model_max_length: int = field(
        default=512,
        metadata={
            "help":
            "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
        },
    )
    # Lora or Quant Arguments
    double_quant: bool = field(
        default=True,
        metadata={"help": "Compress the quantization statistics through double quantization."}
    )
    quant_type: str = field(
        default="nf4",
        metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}
    )
    bits: int = field(
        default=16,
        metadata={"help": "How many bits to use."}
    )
    lora_enable: bool = False
    lora_r: int = 64
    lora_alpha: int = 16
    lora_dropout: float = 0.05
    lora_weight_path: str = ""
    lora_bias: str = "none"


class LazySupervisedDataset(Dataset):
    """Dataset for supervised fine-tuning."""

    def __init__(self, data_path: str, vlprocessor, data_args: DataArguments):
        super(LazySupervisedDataset, self).__init__()
        data_objs = []
        # try:
        #     for data in data_path:
        #         # NOTE: load_dataset can process both json or jsonl files
        #         if data.endswith(".json") or data.endswith(".jsonl"):
        #             data_objs.append(load_dataset("json", data_files=data, cache_dir=data_args.dataset_cache_dir)["train"])
        #         else:
        #             raise Exception(f"Unsupported file format (<{data}>)!")
        #     list_data_dict = concatenate_datasets(data_objs)
        # except:
        traceback.print_exc()
        # NOTE: compatible with the old version
        list_data_dict = []
        for data in data_path:
            if data.endswith(".json"):
                data = json.load(open(data, "r"))
                for i in data:
                    i['id'] = len(list_data_dict)
                    list_data_dict.append(i)
            elif data.endswith(".jsonl"):
                with open(data, "r", encoding="utf-8") as fp:
                    for line in fp:
                        line = line.strip()
                        obj = json.loads(line)
                        obj["id"] = len(list_data_dict)
                        list_data_dict.append(obj)
            else:
                raise Exception(f"Unsupported file format (<{data}>)!!!")

        rank0_print("Formatting inputs...Skip in lazy mode")
        self.vlprocessor = vlprocessor
        self.list_data_dict = list_data_dict
        self.data_args = data_args

    def __len__(self):
        return len(self.list_data_dict)

    @property
    def lengths(self):
        length_list = []
        for sample in self.list_data_dict:
            img_tokens = 576 if 'image' in sample else 0
            length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens)
        return length_list

    @property
    def modality_lengths(self):
        length_list = []
        for sample in self.list_data_dict:
            cur_len = sum(len(conv['value'].split()) for conv in sample['conversations'])
            cur_len = cur_len if 'image' in sample else -cur_len
            length_list.append(cur_len)
        return length_list

    def _convert_normal(self, data_dict):
        data_folder = self.data_args.data_folder
        conversation = copy.deepcopy(data_dict["conversations"])

        # data sanity check and repair
        start_idx = 0
        for sentence in conversation:
            if sentence["from"] == "human" or sentence["from"] == "system":
                break
            start_idx += 1
        if start_idx > 0:
            warnings.warn(f"Find {start_idx} non-user sentences at the beginning of the conversation, remove them automatically!")
            conversation = conversation[start_idx:]
        assert len(conversation) > 1, f"Invalid conversation"

        additional_frames = []
        mask_ids = []
        if 'image' in data_dict and data_dict['image'] is not None:
            modal = 'image'
            if all(not "<image>" in sentence["value"] for sentence in conversation):
                warnings.warn(f"Image tag not found in the conversation, add it automatically at the beginning!")
                conversation[0]["value"] = "<image>" + conversation[0]["value"]
            image_file = data_dict['image']
            if isinstance(image_file, list):
                image_file = [os.path.join(data_folder, f) for f in image_file]
            else:
                image_file = os.path.join(data_folder, image_file)
            images = load_images(image_file)
            
            masks = []
            if 'masks' in data_dict and data_dict['masks'] is not None and len(data_dict['masks'])>0:
                if 'height' in data_dict:
                    h = data_dict['height']
                    w = data_dict['width']
                else:
                    h = None
                    w = None
                for ann in data_dict['masks']:
                    mask = annToMask(ann, h, w)
                    masks.append(mask)
                    mask_ids.append(0)
                masks = np.stack(masks, axis=0)
                masks = torch.from_numpy(masks)
                    
                additional_frames = images.copy()
            else:
                masks = None
                
        elif 'video' in data_dict and data_dict['video'] is not None:
            modal = 'video'
            if all(not "<video>" in sentence["value"] for sentence in conversation):
                warnings.warn(f"Video tag not found in the conversation, add it automatically at the beginning!")
                conversation[0]["value"] = "<video>" + conversation[0]["value"]
            video_file = data_dict['video']
            
            masks = []
            frame_ids = []
            if 'masks' in data_dict and data_dict['masks'] is not None:
                if 'height' in data_dict:
                    h = data_dict['height']
                    w = data_dict['width']
                else:
                    h = None
                    w = None
                for ann in data_dict['masks']:
                    for k in ann.keys():
                        if int(k) not in frame_ids:
                            frame_ids.append(int(k))
                        mask_ids.append(frame_ids.index(int(k)))
                        mask = annToMask(ann[k], h, w)
                        masks.append(mask)
                masks = np.stack(masks, axis=0)
                masks = torch.from_numpy(masks)
            else:
                masks = None
                
            if isinstance(video_file, list) and len(video_file) == 1:
                video_file = os.path.join(data_folder, video_file[0])
                images, timestamps, additional_frames = load_video(video_file, fps=self.data_args.fps, max_frames=self.data_args.max_frames, frame_ids=frame_ids)
            elif isinstance(video_file, list) and len(video_file)>1: #images
                images = []
                for vf in video_file:
                    images+=load_images(os.path.join(data_folder, vf))
                timestamps = data_dict['timestamps']
                additional_frames = []
                for mv in data_dict['masked_video']:
                    additional_frames+=load_images(os.path.join(data_folder, mv))
            else:
                raise ValueError(f"Unsupported video format: {video_file}")
        else:
            modal = 'text'
            images = []
            masks = None

        if masks is not None and len(masks)>0:
            additional_frames, masks, mask_nums = resize_image_mask(additional_frames, masks, mask_ids)
            conv_i = 0
            for idx in range(len(mask_nums)):
                while '<region>' not in conversation[conv_i]['value']:
                    conv_i+=1
                conversation[conv_i]['value'] = conversation[conv_i]['value'].replace('<region>', "["+REGION_TOKEN*mask_nums[idx]+"]", 1)
                    

        messages = []
        for conv in conversation:
            if conv["from"] == "human":
                # replace video tag to image tag for unified processing
                # conv["value"] = conv["value"].replace("<video>", "<image>" * len(images))
                chunks = conv["value"].split("<image>" if modal == 'image' else "<video>")
                messages.append({
                    "role": "user",
                    "content": []
                })

                for chunk_idx in range(1, 2 * len(chunks)):
                    if chunk_idx % 2 == 1:
                        chunk = chunks[chunk_idx // 2].strip()
                        messages[-1]["content"].append({"type": "text",  "text": chunk}) if chunk else None
                    else:
                        if modal == 'image':
                            messages[-1]["content"].append({"type": "image"})
                        elif modal == 'video':
                            messages[-1]["content"].append({"type": "video", "num_frames": len(images), "time": timestamps})
            else:
                messages.append({
                    "role": "assistant",
                    "content": conv['value']
                })

        # TODO: dynamic downsampling
        # image_downsampling = self.data_args.spatial_merge_size
        image_downsampling = self.data_args.spatial_merge_size if modal == "video" else 1
        # if modal == 'video':
        #     image_downsampling = 2
        # else:
        #     # image/text
        #     image_downsampling = 1

        return modal, images, messages, image_downsampling, masks, additional_frames

    def _convert_stream(self, data_dict):
        video_path = os.path.join(self.data_args.data_folder, data_dict['video'][0])
        frames, timestamps = load_video(
            video_path=video_path,
            start_time=data_dict["start_time"],
            end_time=data_dict["end_time"],
            fps=self.data_args.fps,
            max_frames=self.data_args.max_frames,
            size=STREAM_IMAGE_SIZE,
            # size_divisible=14 * STREAM_DOWNSAMPLING,
        )

        if len(frames) > STREAM_MAX_FRAMES:
            max_time = timestamps[STREAM_MAX_FRAMES]
            frames = frames[:STREAM_MAX_FRAMES]
            timestamps = timestamps[:STREAM_MAX_FRAMES]
        else:
            max_time = float("inf")

        messages = []
        frame_idx = 0

        conversation = copy.deepcopy(data_dict["conversation"])
        for message in conversation:
            if message["time"] >= max_time:
                break

            while frame_idx < len(timestamps) and timestamps[frame_idx] <= message["time"]:
                messages.append({
                    "role": "stream",
                    "content": [{"type": "image", "time": timestamps[frame_idx] - data_dict["start_time"]}],
                })
                frame_idx += 1

            messages.append(message)

        frames = frames[:frame_idx]

        # return "video", frames, messages, STREAM_DOWNSAMPLING
        return "video", frames, messages, self.data_args.spatial_merge_size

    def __getitem__(self, i) -> Dict[str, torch.Tensor]:
        data_dict = self.list_data_dict[i]

        try:
            if "stream" in data_dict and data_dict["stream"]:
                modal, images, messages, image_downsampling = self._convert_stream(data_dict)
            else:
                modal, images, messages, image_downsampling, masks, additional_frames = self._convert_normal(data_dict)

            data_dict = self.vlprocessor(
                images=images,
                text=messages,
                image_downsampling=image_downsampling,
                return_labels=True,
                return_tensors="pt",
            )
            if len(additional_frames)>0:
                additional_images_dict = self.vlprocessor._process_image(additional_frames, num_images=1, image_downsampling=1)
                additional_images = additional_images_dict['images']
                additional_images_thws = additional_images_dict['grid_thws']
            else:
                additional_images = []
                additional_images_thws = []

            if modal == 'text':
                unit_size = self.vlprocessor.image_processor.patch_size**2 * 3 * self.vlprocessor.image_processor.temporal_patch_size
                data_dict['images'] = [torch.zeros(self.data_args.spatial_merge_size**2, unit_size)]
                data_dict['grid_thws'] = [torch.tensor([[1, self.data_args.spatial_merge_size, self.data_args.spatial_merge_size]])]
            elif modal == 'image' or modal == 'video':
                assert len(data_dict['images']) > 0 and len(data_dict['grid_thws']) > 0, f"Invalid image data: {data_dict['images']}, {data_dict['grid_thws']}"

            data_dict['modal'] = modal
            data_dict['masks'] = masks
            data_dict['additional_images'] = additional_images
            data_dict['additional_images_thws'] = additional_images_thws

        except Exception as e:
            traceback.print_exc()
            backup_idx = random.randint(0, len(self.list_data_dict) - 1)
            print(f"Encounted error when process {i}-th example: {data_dict}, use {backup_idx}-th example instead!!!")
            return self.__getitem__(backup_idx)

        return data_dict


@dataclass
class DataCollatorForSupervisedDataset(object):
    """Collate examples for supervised fine-tuning."""

    vlprocessor: transformers.ProcessorMixin

    def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
        input_ids, labels = tuple([instance[key] for instance in instances]
                                  for key in ("input_ids", "labels"))
        input_ids = torch.nn.utils.rnn.pad_sequence(
            input_ids,
            batch_first=True,
            padding_value=self.vlprocessor.tokenizer.pad_token_id)
        labels = torch.nn.utils.rnn.pad_sequence(labels,
                                                 batch_first=True,
                                                 padding_value=IGNORE_INDEX)
        input_ids = input_ids[:, :self.vlprocessor.tokenizer.model_max_length]
        labels = labels[:, :self.vlprocessor.tokenizer.model_max_length]
        batch = dict(
            input_ids=input_ids,
            labels=labels,
            attention_mask=input_ids.ne(self.vlprocessor.tokenizer.pad_token_id),
        )

        # work for 'images' argument in `prepare_inputs_labels_for_multimodal`
        batch['images'] = []
        batch['additional_images'] = []
        batch["masks"] = []
        mask_idx_start = 0
        for instance in instances:
            # for modal_token in MODAL_INDEX_MAP.keys():
            #     modal_token = modal_token.lower()
            #     # MODAL_TOKEN shape like: <image>, <video>, ...
            #     modal_name = re.findall(f'[<](.*)[>]', modal_token)
            #     assert len(modal_name) == 1
            #     modal_name = modal_name[0]
            batch['images'].append((instance['modal'], instance['images'], instance['grid_thws']))
            if len(instance['additional_images'])>0:
                batch['additional_images'].append((instance['additional_images'], instance['additional_images_thws']))
            if instance["masks"] is not None:  
                batch["masks"].append(instance["masks"])    
            mask_idx_start+=len(instance['additional_images'])         
        return batch


def make_supervised_data_module(vlprocessor, data_args) -> Dict:
    """Make dataset and collator for supervised fine-tuning."""
    train_dataset = LazySupervisedDataset(
        vlprocessor=vlprocessor,
        data_path=data_args.data_path,
        data_args=data_args
    )
    data_collator = DataCollatorForSupervisedDataset(vlprocessor=vlprocessor)
    return dict(train_dataset=train_dataset,
                eval_dataset=None,
                data_collator=data_collator)


@dataclass
class DataCollatorWithFlatteningForSupervisedDataset(object):
    """Collate examples for batch flattened supervised fine-tuning."""

    vlprocessor: transformers.ProcessorMixin

    def __call__(self, instances: Sequence[Dict], separator_id=-100) -> Dict[str, torch.Tensor]:
        input_ids, labels = tuple([instance[key] for instance in instances]
                                  for key in ("input_ids", "labels"))

        new_input_ids = []
        new_labels = []
        position_ids = []
        for idx in range(0, len(input_ids)):
            new_input_ids.append(input_ids[idx][:self.vlprocessor.tokenizer.model_max_length])
            temp_label = labels[idx][:self.vlprocessor.tokenizer.model_max_length]
            temp_label[0] = separator_id
            new_labels.append(temp_label)
            position_ids.append(torch.tensor(list(range(len(input_ids[idx][:self.vlprocessor.tokenizer.model_max_length])))))

        new_input_ids = torch.cat(new_input_ids)
        new_labels = torch.cat(new_labels)
        position_ids = torch.cat(position_ids)

        batch = dict(
            input_ids=new_input_ids.unsqueeze(0),
            labels=new_labels.unsqueeze(0),
            position_ids=position_ids.unsqueeze(0),
        )
        
        # work for 'images' argument in `prepare_inputs_labels_for_multimodal`
        batch['images'] = []
        batch['additional_images'] = []
        # mask_idx_start = 0
        for instance in instances:
            batch['images'].append((instance['modal'], instance['images'], instance['grid_thws']))
            if len(instance['additional_images'])>0:
                batch['additional_images'].append((instance['additional_images'], instance['additional_images_thws']))
                # mask_idx_start+=len(instance['additional_images'])         
        batch["masks"] = [x["masks"] for x in instances]
        return batch


def make_flattening_supervised_data_module(vlprocessor: transformers.ProcessorMixin, data_args) -> Dict:
    """Make batch flattened dataset and collator for supervised fine-tuning."""
    train_dataset = LazySupervisedDataset(
        vlprocessor=vlprocessor,
        data_path=data_args.data_path,
        data_args=data_args
    )
    data_collator = DataCollatorWithFlatteningForSupervisedDataset(vlprocessor=vlprocessor)
    return dict(train_dataset=train_dataset,
                eval_dataset=None,
                data_collator=data_collator)


def train(attn_implementation=None):
    global local_rank
    set_seed(42)

    parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    local_rank = training_args.local_rank

    if local_rank == 0:
        print('------model args------')
        print(model_args)
        print('------data args------')
        print(data_args)
        print('------training args------')
        print(training_args)

    compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))

    bnb_model_from_pretrained_args = {}
    if training_args.bits in [4, 8]:
        from transformers import BitsAndBytesConfig
        bnb_model_from_pretrained_args.update(dict(
            # device_map={"": training_args.device},
            # BUG: High version transformers report error:
            # ValueError: You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing `quantization_config` argument at the same time
            # load_in_4bit=training_args.bits == 4,
            # load_in_8bit=training_args.bits == 8,
            quantization_config=BitsAndBytesConfig(
                load_in_4bit=training_args.bits == 4,
                load_in_8bit=training_args.bits == 8,
                llm_int8_skip_modules=["mm_projector"],
                llm_int8_threshold=6.0,
                llm_int8_has_fp16_weight=False,
                bnb_4bit_compute_dtype=compute_dtype,
                bnb_4bit_use_double_quant=training_args.double_quant,
                bnb_4bit_quant_type=training_args.quant_type, # {'fp4', 'nf4'}
                bnb_4bit_quant_storage=compute_dtype,
            )
        ))

    config = VLLMConfigs[model_args.model_type].from_pretrained(model_args.model_path)

    config._attn_implementation = attn_implementation
    # NOTE: active spatial_merge_size arguments
    config.spatial_merge_size = model_args.spatial_merge_size
    config.mm_max_length = model_args.mm_max_length
    config.use_token_compression = model_args.use_token_compression

    if model_args.vision_encoder is not None:
        model = VLLMs[model_args.model_type].from_pretrained(
            model_args.model_path,
            config=config,
            torch_dtype=compute_dtype,
            do_sample=True,
            **bnb_model_from_pretrained_args
        )
        if 'mixtral' in model_args.model_type:
            import deepspeed
            deepspeed.utils.set_z3_leaf_modules(model, [MixtralSparseMoeBlock])
    else:
        model = transformers.LlamaForCausalLM.from_pretrained(
            model_args.model_path,
            config=config,
            torch_dtype=compute_dtype,
            do_sample=True,
            **bnb_model_from_pretrained_args
        )
    model.config.use_cache = False
    if model_args.freeze_backbone:
        model.model.requires_grad_(False)

    if training_args.bits in [4, 8]:
        from peft import prepare_model_for_kbit_training
        model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
        model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing)

    if training_args.gradient_checkpointing:
        if hasattr(model, "enable_input_require_grads"):
            model.enable_input_require_grads()
        else:
            def make_inputs_require_grad(module, input, output):
                output.requires_grad_(True)
            model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)

    if training_args.lora_enable:
        from peft import LoraConfig, get_peft_model
        lora_config = LoraConfig(
            r=training_args.lora_r,
            lora_alpha=training_args.lora_alpha,
            target_modules=find_all_linear_names(model),
            lora_dropout=training_args.lora_dropout,
            bias=training_args.lora_bias,
            task_type="CAUSAL_LM",
        )
        if training_args.bits == 16:
            if training_args.bf16:
                model.to(torch.bfloat16)
            if training_args.fp16:
                model.to(torch.float16)
        rank0_print("Adding LoRA adapters...")
        model = get_peft_model(model, lora_config)

    tokenizer = transformers.AutoTokenizer.from_pretrained(
        model_args.model_path,
        model_max_length=training_args.model_max_length,
        padding_side="right",
        use_fast=True,
    )

    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.unk_token

    if model_args.vision_encoder is not None:
        # initialize vision encoder + multi-modal projector
        model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp)

        vision_encoder = model.get_vision_encoder()
        vision_encoder.to(dtype=compute_dtype, device=training_args.device)

        mm_projector = model.get_mm_projector()
        mm_projector.to(dtype=compute_dtype if training_args.bf16 else torch.float16, device=training_args.device)

        data_args.is_multimodal = True

        model.config.tokenizer_padding_side = tokenizer.padding_side
        model.config.tokenizer_model_max_length = tokenizer.model_max_length

        if training_args.bits in [4, 8]:
            model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device)

        # decoupled learning rate
        model.config.llm_lr = training_args.llm_lr
        model.config.vision_encoder_lr = training_args.vision_encoder_lr
        model.config.mm_projector_lr = training_args.mm_projector_lr
        model.config.region_encoder_lr = training_args.region_encoder_lr

        if model.config.llm_lr is None:
            for p in model.get_model().parameters():
                p.requires_grad = False
            for p in model.get_model().vision_encoder.parameters():
                p.requires_grad = True
            for p in model.get_model().mm_projector.parameters():
                p.requires_grad = True
            for p in model.get_model().region_encoder.parameters():
                p.requires_grad = True


        if model.config.vision_encoder_lr is None:
            for p in model.get_model().vision_encoder.parameters():
                p.requires_grad = False

        if model.config.mm_projector_lr is None:
            for p in model.get_model().mm_projector.parameters():
                p.requires_grad = False
                
        if model.config.region_encoder_lr is None:
            for p in model.get_model().region_encoder.parameters():
                p.requires_grad = False

        model.config.max_frames = getattr(data_args, 'max_frames', NUM_FRAMES)
        model.config.image_aspect_ratio = data_args.image_aspect_ratio if 'qwen2vl' not in model_args.vision_encoder else 'qwen2vl'

        # NOTE: complement data_args via model hyperparameters
        # 1. acquire image size
        model.config.image_size = data_args.image_size = vision_encoder.image_size
        # 2. calculate the number of tokens in the image
        model.config.image_token_length = data_args.image_token_length = mm_projector.cal_proj_size(vision_encoder.num_patches_per_side)
        # 3. check if alignment
        model.config.is_alignment = training_args.is_alignment = data_args.is_alignment = (
            model.config.mm_projector_lr is not None and
            model.config.llm_lr is None and
            model.config.vision_encoder_lr is None
        )
        # 4. set spatial merge size as default
        model.config.spatial_merge_size = data_args.spatial_merge_size = model_args.spatial_merge_size
        tokenizer.add_tokens([DEFAULT_IMAGE_TOKEN, STREAM_START_TOKEN, STREAM_END_TOKEN], special_tokens=True)
        tokenizer.add_tokens([REGION_TOKEN], special_tokens=True)
        model.resize_token_embeddings(len(tokenizer))

        model.config.image_token_index = tokenizer.convert_tokens_to_ids(DEFAULT_IMAGE_TOKEN)
        model.config.region_token_index = tokenizer.convert_tokens_to_ids(REGION_TOKEN)
        

        vlprocessor = Videollama3Processor(vision_encoder.image_processor, tokenizer)

    if training_args.bits in [4, 8]:
        from peft.tuners.lora import LoraLayer
        for name, module in model.named_modules():
            if isinstance(module, LoraLayer):
                if training_args.bf16:
                    module = module.to(torch.bfloat16)
            if 'norm' in name:
                module = module.to(torch.float32)
            if 'lm_head' in name or 'embed_tokens' in name:
                if hasattr(module, 'weight'):
                    if training_args.bf16 and module.weight.dtype == torch.float32:
                        module = module.to(torch.bfloat16)

    if local_rank == 0:
        print("Current model:", model)
        print("Model config:", model.config)

    if data_args.use_batch_flattening:
        rank0_print('You are using flattening operation to flatten the entire mini batch into a single sequence')
        assert model.config._attn_implementation == 'flash_attention_2'
        assert version.parse(transformers.__version__) >= version.parse("4.44.0")
        data_module = make_flattening_supervised_data_module(vlprocessor=vlprocessor, data_args=data_args)
    else:
        data_module = make_supervised_data_module(vlprocessor=vlprocessor, data_args=data_args)

    # select a Trainer
    trainer = VideoLLaMA3Trainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)

    if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
        trainer.train(resume_from_checkpoint=True)
    else:
        trainer.train()
    trainer.save_state()

    model.config.use_cache = True

    if training_args.lora_enable:
        state_dict = get_peft_state_maybe_zero_3(model.named_parameters(), training_args.lora_bias)
        non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(model.named_parameters())
        if training_args.local_rank == 0 or training_args.local_rank == -1:
            model.config.save_pretrained(training_args.output_dir)
            model.save_pretrained(training_args.output_dir, state_dict=state_dict)
            torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin'))
    else:
        safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)


if __name__ == "__main__":
    train(attn_implementation="flash_attention_2")