Spaces:
Running
on
Zero
Running
on
Zero
File size: 34,476 Bytes
44d8da2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 |
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import copy
import json
import os
import pathlib
import random
import re
import sys
import warnings
import traceback
from packaging import version
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Sequence
import numpy as np
# torch-related packages
# NOTE: torch must be imported before transformers. Otherwise, `Segmentation fault (core dumped)` will occur.
import torch
import transformers
from packaging import version
from datasets import load_dataset, concatenate_datasets
from torch.utils.data import Dataset
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
sys.path.append('./')
from videollama3.constants import (IGNORE_INDEX, MODAL_INDEX_MAP,
NUM_FRAMES, DEFAULT_IMAGE_TOKEN, STREAM_MAX_FRAMES,
STREAM_DOWNSAMPLING, STREAM_FPS, STREAM_IMAGE_SIZE,
STREAM_START_TOKEN, STREAM_END_TOKEN, REGION_TOKEN)
from videollama3.mm_utils import (load_images, load_video,
tokenizer_multimodal_token, annToMask, resize_image_mask)
from videollama3.model import *
from videollama3.videollama3_trainer import (
VideoLLaMA3Trainer, find_all_linear_names, get_peft_state_maybe_zero_3,
get_peft_state_non_lora_maybe_zero_3, safe_save_model_for_hf_trainer)
from videollama3.model.processor import Videollama3Processor
# NOTE: fast tokenizer warning issue: https://github.com/huggingface/transformers/issues/5486
os.environ["TOKENIZERS_PARALLELISM"] = "true"
local_rank = None
def rank0_print(*args):
if local_rank == 0:
print(*args)
def set_seed(seed=42):
"""
Set the random seed for reproducible results.
:param seed: An integer value to be used as the random seed.
"""
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # for multi-GPU setups
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def int_with_none(value):
if value == 'None':
return None
return int(value)
@dataclass
class ModelArguments:
# LLM Arguments
model_type: Optional[str] = field(default="videollama3", metadata={"help": "Model type selected in the list: " + ", ".join(VLLMs.keys())})
model_path: Optional[str] = field(default="lmsys/vicuna-7b-v1.5")
version: Optional[str] = field(default="v1", metadata={"help": "Version of the conversation template."})
freeze_backbone: bool = field(default=False, metadata={"help": "Whether to freeze the LLM backbone."})
# Connector Arguments
mm_projector_type: Optional[str] = field(default='linear')
pretrain_mm_projector: Optional[str] = field(default=None)
# Vision tower Arguments
vision_encoder: Optional[str] = field(default=None)
mm_vision_select_layer: Optional[int] = field(default=-1)
mm_vision_select_feature: Optional[str] = field(default="patch")
mm_attn_implementation: Optional[str] = field(default="flash_attention_2")
# Token downsampling Arguments
spatial_merge_size: Optional[int] = field(default=1)
mm_max_length: Optional[int] = field(default=9477)
use_token_compression: Optional[bool] = field(default=False)
@dataclass
class DataArguments:
# Path Arguments
data_path: List[str] = field(default=None, metadata={"help": "Path to the training data."})
# image_folder: Optional[str] = field(default=None)
# video_folder: Optional[str] = field(default=None)
data_folder: Optional[str] = field(default=None)
# Loading Arguments
is_multimodal: bool = False
fps: Optional[int] = field(default=None)
max_frames: Optional[int_with_none] = field(default=None)
# Preprocess Arguments
image_aspect_ratio: str = 'square'
use_batch_flattening: bool = field(default=True, metadata={"help": "Whether to flatten the in-batch sequences of variable lengths."})
dataset_cache_dir: Optional[str] = field(default=None)
@dataclass
class TrainingArguments(transformers.TrainingArguments):
# shut auto processing (_remove_unused_columns) of transformers Trainer
remove_unused_columns: bool = field(default=False)
optim: str = field(default="adamw_torch")
# Training learning rate Arguments
vision_encoder_lr: Optional[float] = None
mm_projector_lr: Optional[float] = None
llm_lr: Optional[float] = None
region_encoder_lr: Optional[float] = None
# Training Data Arguments
group_by_modality_length: bool = field(default=False)
model_max_length: int = field(
default=512,
metadata={
"help":
"Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
# Lora or Quant Arguments
double_quant: bool = field(
default=True,
metadata={"help": "Compress the quantization statistics through double quantization."}
)
quant_type: str = field(
default="nf4",
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}
)
bits: int = field(
default=16,
metadata={"help": "How many bits to use."}
)
lora_enable: bool = False
lora_r: int = 64
lora_alpha: int = 16
lora_dropout: float = 0.05
lora_weight_path: str = ""
lora_bias: str = "none"
class LazySupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, data_path: str, vlprocessor, data_args: DataArguments):
super(LazySupervisedDataset, self).__init__()
data_objs = []
# try:
# for data in data_path:
# # NOTE: load_dataset can process both json or jsonl files
# if data.endswith(".json") or data.endswith(".jsonl"):
# data_objs.append(load_dataset("json", data_files=data, cache_dir=data_args.dataset_cache_dir)["train"])
# else:
# raise Exception(f"Unsupported file format (<{data}>)!")
# list_data_dict = concatenate_datasets(data_objs)
# except:
traceback.print_exc()
# NOTE: compatible with the old version
list_data_dict = []
for data in data_path:
if data.endswith(".json"):
data = json.load(open(data, "r"))
for i in data:
i['id'] = len(list_data_dict)
list_data_dict.append(i)
elif data.endswith(".jsonl"):
with open(data, "r", encoding="utf-8") as fp:
for line in fp:
line = line.strip()
obj = json.loads(line)
obj["id"] = len(list_data_dict)
list_data_dict.append(obj)
else:
raise Exception(f"Unsupported file format (<{data}>)!!!")
rank0_print("Formatting inputs...Skip in lazy mode")
self.vlprocessor = vlprocessor
self.list_data_dict = list_data_dict
self.data_args = data_args
def __len__(self):
return len(self.list_data_dict)
@property
def lengths(self):
length_list = []
for sample in self.list_data_dict:
img_tokens = 576 if 'image' in sample else 0
length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens)
return length_list
@property
def modality_lengths(self):
length_list = []
for sample in self.list_data_dict:
cur_len = sum(len(conv['value'].split()) for conv in sample['conversations'])
cur_len = cur_len if 'image' in sample else -cur_len
length_list.append(cur_len)
return length_list
def _convert_normal(self, data_dict):
data_folder = self.data_args.data_folder
conversation = copy.deepcopy(data_dict["conversations"])
# data sanity check and repair
start_idx = 0
for sentence in conversation:
if sentence["from"] == "human" or sentence["from"] == "system":
break
start_idx += 1
if start_idx > 0:
warnings.warn(f"Find {start_idx} non-user sentences at the beginning of the conversation, remove them automatically!")
conversation = conversation[start_idx:]
assert len(conversation) > 1, f"Invalid conversation"
additional_frames = []
mask_ids = []
if 'image' in data_dict and data_dict['image'] is not None:
modal = 'image'
if all(not "<image>" in sentence["value"] for sentence in conversation):
warnings.warn(f"Image tag not found in the conversation, add it automatically at the beginning!")
conversation[0]["value"] = "<image>" + conversation[0]["value"]
image_file = data_dict['image']
if isinstance(image_file, list):
image_file = [os.path.join(data_folder, f) for f in image_file]
else:
image_file = os.path.join(data_folder, image_file)
images = load_images(image_file)
masks = []
if 'masks' in data_dict and data_dict['masks'] is not None and len(data_dict['masks'])>0:
if 'height' in data_dict:
h = data_dict['height']
w = data_dict['width']
else:
h = None
w = None
for ann in data_dict['masks']:
mask = annToMask(ann, h, w)
masks.append(mask)
mask_ids.append(0)
masks = np.stack(masks, axis=0)
masks = torch.from_numpy(masks)
additional_frames = images.copy()
else:
masks = None
elif 'video' in data_dict and data_dict['video'] is not None:
modal = 'video'
if all(not "<video>" in sentence["value"] for sentence in conversation):
warnings.warn(f"Video tag not found in the conversation, add it automatically at the beginning!")
conversation[0]["value"] = "<video>" + conversation[0]["value"]
video_file = data_dict['video']
masks = []
frame_ids = []
if 'masks' in data_dict and data_dict['masks'] is not None:
if 'height' in data_dict:
h = data_dict['height']
w = data_dict['width']
else:
h = None
w = None
for ann in data_dict['masks']:
for k in ann.keys():
if int(k) not in frame_ids:
frame_ids.append(int(k))
mask_ids.append(frame_ids.index(int(k)))
mask = annToMask(ann[k], h, w)
masks.append(mask)
masks = np.stack(masks, axis=0)
masks = torch.from_numpy(masks)
else:
masks = None
if isinstance(video_file, list) and len(video_file) == 1:
video_file = os.path.join(data_folder, video_file[0])
images, timestamps, additional_frames = load_video(video_file, fps=self.data_args.fps, max_frames=self.data_args.max_frames, frame_ids=frame_ids)
elif isinstance(video_file, list) and len(video_file)>1: #images
images = []
for vf in video_file:
images+=load_images(os.path.join(data_folder, vf))
timestamps = data_dict['timestamps']
additional_frames = []
for mv in data_dict['masked_video']:
additional_frames+=load_images(os.path.join(data_folder, mv))
else:
raise ValueError(f"Unsupported video format: {video_file}")
else:
modal = 'text'
images = []
masks = None
if masks is not None and len(masks)>0:
additional_frames, masks, mask_nums = resize_image_mask(additional_frames, masks, mask_ids)
conv_i = 0
for idx in range(len(mask_nums)):
while '<region>' not in conversation[conv_i]['value']:
conv_i+=1
conversation[conv_i]['value'] = conversation[conv_i]['value'].replace('<region>', "["+REGION_TOKEN*mask_nums[idx]+"]", 1)
messages = []
for conv in conversation:
if conv["from"] == "human":
# replace video tag to image tag for unified processing
# conv["value"] = conv["value"].replace("<video>", "<image>" * len(images))
chunks = conv["value"].split("<image>" if modal == 'image' else "<video>")
messages.append({
"role": "user",
"content": []
})
for chunk_idx in range(1, 2 * len(chunks)):
if chunk_idx % 2 == 1:
chunk = chunks[chunk_idx // 2].strip()
messages[-1]["content"].append({"type": "text", "text": chunk}) if chunk else None
else:
if modal == 'image':
messages[-1]["content"].append({"type": "image"})
elif modal == 'video':
messages[-1]["content"].append({"type": "video", "num_frames": len(images), "time": timestamps})
else:
messages.append({
"role": "assistant",
"content": conv['value']
})
# TODO: dynamic downsampling
# image_downsampling = self.data_args.spatial_merge_size
image_downsampling = self.data_args.spatial_merge_size if modal == "video" else 1
# if modal == 'video':
# image_downsampling = 2
# else:
# # image/text
# image_downsampling = 1
return modal, images, messages, image_downsampling, masks, additional_frames
def _convert_stream(self, data_dict):
video_path = os.path.join(self.data_args.data_folder, data_dict['video'][0])
frames, timestamps = load_video(
video_path=video_path,
start_time=data_dict["start_time"],
end_time=data_dict["end_time"],
fps=self.data_args.fps,
max_frames=self.data_args.max_frames,
size=STREAM_IMAGE_SIZE,
# size_divisible=14 * STREAM_DOWNSAMPLING,
)
if len(frames) > STREAM_MAX_FRAMES:
max_time = timestamps[STREAM_MAX_FRAMES]
frames = frames[:STREAM_MAX_FRAMES]
timestamps = timestamps[:STREAM_MAX_FRAMES]
else:
max_time = float("inf")
messages = []
frame_idx = 0
conversation = copy.deepcopy(data_dict["conversation"])
for message in conversation:
if message["time"] >= max_time:
break
while frame_idx < len(timestamps) and timestamps[frame_idx] <= message["time"]:
messages.append({
"role": "stream",
"content": [{"type": "image", "time": timestamps[frame_idx] - data_dict["start_time"]}],
})
frame_idx += 1
messages.append(message)
frames = frames[:frame_idx]
# return "video", frames, messages, STREAM_DOWNSAMPLING
return "video", frames, messages, self.data_args.spatial_merge_size
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
data_dict = self.list_data_dict[i]
try:
if "stream" in data_dict and data_dict["stream"]:
modal, images, messages, image_downsampling = self._convert_stream(data_dict)
else:
modal, images, messages, image_downsampling, masks, additional_frames = self._convert_normal(data_dict)
data_dict = self.vlprocessor(
images=images,
text=messages,
image_downsampling=image_downsampling,
return_labels=True,
return_tensors="pt",
)
if len(additional_frames)>0:
additional_images_dict = self.vlprocessor._process_image(additional_frames, num_images=1, image_downsampling=1)
additional_images = additional_images_dict['images']
additional_images_thws = additional_images_dict['grid_thws']
else:
additional_images = []
additional_images_thws = []
if modal == 'text':
unit_size = self.vlprocessor.image_processor.patch_size**2 * 3 * self.vlprocessor.image_processor.temporal_patch_size
data_dict['images'] = [torch.zeros(self.data_args.spatial_merge_size**2, unit_size)]
data_dict['grid_thws'] = [torch.tensor([[1, self.data_args.spatial_merge_size, self.data_args.spatial_merge_size]])]
elif modal == 'image' or modal == 'video':
assert len(data_dict['images']) > 0 and len(data_dict['grid_thws']) > 0, f"Invalid image data: {data_dict['images']}, {data_dict['grid_thws']}"
data_dict['modal'] = modal
data_dict['masks'] = masks
data_dict['additional_images'] = additional_images
data_dict['additional_images_thws'] = additional_images_thws
except Exception as e:
traceback.print_exc()
backup_idx = random.randint(0, len(self.list_data_dict) - 1)
print(f"Encounted error when process {i}-th example: {data_dict}, use {backup_idx}-th example instead!!!")
return self.__getitem__(backup_idx)
return data_dict
@dataclass
class DataCollatorForSupervisedDataset(object):
"""Collate examples for supervised fine-tuning."""
vlprocessor: transformers.ProcessorMixin
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
input_ids, labels = tuple([instance[key] for instance in instances]
for key in ("input_ids", "labels"))
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids,
batch_first=True,
padding_value=self.vlprocessor.tokenizer.pad_token_id)
labels = torch.nn.utils.rnn.pad_sequence(labels,
batch_first=True,
padding_value=IGNORE_INDEX)
input_ids = input_ids[:, :self.vlprocessor.tokenizer.model_max_length]
labels = labels[:, :self.vlprocessor.tokenizer.model_max_length]
batch = dict(
input_ids=input_ids,
labels=labels,
attention_mask=input_ids.ne(self.vlprocessor.tokenizer.pad_token_id),
)
# work for 'images' argument in `prepare_inputs_labels_for_multimodal`
batch['images'] = []
batch['additional_images'] = []
batch["masks"] = []
mask_idx_start = 0
for instance in instances:
# for modal_token in MODAL_INDEX_MAP.keys():
# modal_token = modal_token.lower()
# # MODAL_TOKEN shape like: <image>, <video>, ...
# modal_name = re.findall(f'[<](.*)[>]', modal_token)
# assert len(modal_name) == 1
# modal_name = modal_name[0]
batch['images'].append((instance['modal'], instance['images'], instance['grid_thws']))
if len(instance['additional_images'])>0:
batch['additional_images'].append((instance['additional_images'], instance['additional_images_thws']))
if instance["masks"] is not None:
batch["masks"].append(instance["masks"])
mask_idx_start+=len(instance['additional_images'])
return batch
def make_supervised_data_module(vlprocessor, data_args) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
train_dataset = LazySupervisedDataset(
vlprocessor=vlprocessor,
data_path=data_args.data_path,
data_args=data_args
)
data_collator = DataCollatorForSupervisedDataset(vlprocessor=vlprocessor)
return dict(train_dataset=train_dataset,
eval_dataset=None,
data_collator=data_collator)
@dataclass
class DataCollatorWithFlatteningForSupervisedDataset(object):
"""Collate examples for batch flattened supervised fine-tuning."""
vlprocessor: transformers.ProcessorMixin
def __call__(self, instances: Sequence[Dict], separator_id=-100) -> Dict[str, torch.Tensor]:
input_ids, labels = tuple([instance[key] for instance in instances]
for key in ("input_ids", "labels"))
new_input_ids = []
new_labels = []
position_ids = []
for idx in range(0, len(input_ids)):
new_input_ids.append(input_ids[idx][:self.vlprocessor.tokenizer.model_max_length])
temp_label = labels[idx][:self.vlprocessor.tokenizer.model_max_length]
temp_label[0] = separator_id
new_labels.append(temp_label)
position_ids.append(torch.tensor(list(range(len(input_ids[idx][:self.vlprocessor.tokenizer.model_max_length])))))
new_input_ids = torch.cat(new_input_ids)
new_labels = torch.cat(new_labels)
position_ids = torch.cat(position_ids)
batch = dict(
input_ids=new_input_ids.unsqueeze(0),
labels=new_labels.unsqueeze(0),
position_ids=position_ids.unsqueeze(0),
)
# work for 'images' argument in `prepare_inputs_labels_for_multimodal`
batch['images'] = []
batch['additional_images'] = []
# mask_idx_start = 0
for instance in instances:
batch['images'].append((instance['modal'], instance['images'], instance['grid_thws']))
if len(instance['additional_images'])>0:
batch['additional_images'].append((instance['additional_images'], instance['additional_images_thws']))
# mask_idx_start+=len(instance['additional_images'])
batch["masks"] = [x["masks"] for x in instances]
return batch
def make_flattening_supervised_data_module(vlprocessor: transformers.ProcessorMixin, data_args) -> Dict:
"""Make batch flattened dataset and collator for supervised fine-tuning."""
train_dataset = LazySupervisedDataset(
vlprocessor=vlprocessor,
data_path=data_args.data_path,
data_args=data_args
)
data_collator = DataCollatorWithFlatteningForSupervisedDataset(vlprocessor=vlprocessor)
return dict(train_dataset=train_dataset,
eval_dataset=None,
data_collator=data_collator)
def train(attn_implementation=None):
global local_rank
set_seed(42)
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
local_rank = training_args.local_rank
if local_rank == 0:
print('------model args------')
print(model_args)
print('------data args------')
print(data_args)
print('------training args------')
print(training_args)
compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
bnb_model_from_pretrained_args = {}
if training_args.bits in [4, 8]:
from transformers import BitsAndBytesConfig
bnb_model_from_pretrained_args.update(dict(
# device_map={"": training_args.device},
# BUG: High version transformers report error:
# ValueError: You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing `quantization_config` argument at the same time
# load_in_4bit=training_args.bits == 4,
# load_in_8bit=training_args.bits == 8,
quantization_config=BitsAndBytesConfig(
load_in_4bit=training_args.bits == 4,
load_in_8bit=training_args.bits == 8,
llm_int8_skip_modules=["mm_projector"],
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=training_args.double_quant,
bnb_4bit_quant_type=training_args.quant_type, # {'fp4', 'nf4'}
bnb_4bit_quant_storage=compute_dtype,
)
))
config = VLLMConfigs[model_args.model_type].from_pretrained(model_args.model_path)
config._attn_implementation = attn_implementation
# NOTE: active spatial_merge_size arguments
config.spatial_merge_size = model_args.spatial_merge_size
config.mm_max_length = model_args.mm_max_length
config.use_token_compression = model_args.use_token_compression
if model_args.vision_encoder is not None:
model = VLLMs[model_args.model_type].from_pretrained(
model_args.model_path,
config=config,
torch_dtype=compute_dtype,
do_sample=True,
**bnb_model_from_pretrained_args
)
if 'mixtral' in model_args.model_type:
import deepspeed
deepspeed.utils.set_z3_leaf_modules(model, [MixtralSparseMoeBlock])
else:
model = transformers.LlamaForCausalLM.from_pretrained(
model_args.model_path,
config=config,
torch_dtype=compute_dtype,
do_sample=True,
**bnb_model_from_pretrained_args
)
model.config.use_cache = False
if model_args.freeze_backbone:
model.model.requires_grad_(False)
if training_args.bits in [4, 8]:
from peft import prepare_model_for_kbit_training
model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing)
if training_args.gradient_checkpointing:
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
if training_args.lora_enable:
from peft import LoraConfig, get_peft_model
lora_config = LoraConfig(
r=training_args.lora_r,
lora_alpha=training_args.lora_alpha,
target_modules=find_all_linear_names(model),
lora_dropout=training_args.lora_dropout,
bias=training_args.lora_bias,
task_type="CAUSAL_LM",
)
if training_args.bits == 16:
if training_args.bf16:
model.to(torch.bfloat16)
if training_args.fp16:
model.to(torch.float16)
rank0_print("Adding LoRA adapters...")
model = get_peft_model(model, lora_config)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_path,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=True,
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.unk_token
if model_args.vision_encoder is not None:
# initialize vision encoder + multi-modal projector
model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp)
vision_encoder = model.get_vision_encoder()
vision_encoder.to(dtype=compute_dtype, device=training_args.device)
mm_projector = model.get_mm_projector()
mm_projector.to(dtype=compute_dtype if training_args.bf16 else torch.float16, device=training_args.device)
data_args.is_multimodal = True
model.config.tokenizer_padding_side = tokenizer.padding_side
model.config.tokenizer_model_max_length = tokenizer.model_max_length
if training_args.bits in [4, 8]:
model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device)
# decoupled learning rate
model.config.llm_lr = training_args.llm_lr
model.config.vision_encoder_lr = training_args.vision_encoder_lr
model.config.mm_projector_lr = training_args.mm_projector_lr
model.config.region_encoder_lr = training_args.region_encoder_lr
if model.config.llm_lr is None:
for p in model.get_model().parameters():
p.requires_grad = False
for p in model.get_model().vision_encoder.parameters():
p.requires_grad = True
for p in model.get_model().mm_projector.parameters():
p.requires_grad = True
for p in model.get_model().region_encoder.parameters():
p.requires_grad = True
if model.config.vision_encoder_lr is None:
for p in model.get_model().vision_encoder.parameters():
p.requires_grad = False
if model.config.mm_projector_lr is None:
for p in model.get_model().mm_projector.parameters():
p.requires_grad = False
if model.config.region_encoder_lr is None:
for p in model.get_model().region_encoder.parameters():
p.requires_grad = False
model.config.max_frames = getattr(data_args, 'max_frames', NUM_FRAMES)
model.config.image_aspect_ratio = data_args.image_aspect_ratio if 'qwen2vl' not in model_args.vision_encoder else 'qwen2vl'
# NOTE: complement data_args via model hyperparameters
# 1. acquire image size
model.config.image_size = data_args.image_size = vision_encoder.image_size
# 2. calculate the number of tokens in the image
model.config.image_token_length = data_args.image_token_length = mm_projector.cal_proj_size(vision_encoder.num_patches_per_side)
# 3. check if alignment
model.config.is_alignment = training_args.is_alignment = data_args.is_alignment = (
model.config.mm_projector_lr is not None and
model.config.llm_lr is None and
model.config.vision_encoder_lr is None
)
# 4. set spatial merge size as default
model.config.spatial_merge_size = data_args.spatial_merge_size = model_args.spatial_merge_size
tokenizer.add_tokens([DEFAULT_IMAGE_TOKEN, STREAM_START_TOKEN, STREAM_END_TOKEN], special_tokens=True)
tokenizer.add_tokens([REGION_TOKEN], special_tokens=True)
model.resize_token_embeddings(len(tokenizer))
model.config.image_token_index = tokenizer.convert_tokens_to_ids(DEFAULT_IMAGE_TOKEN)
model.config.region_token_index = tokenizer.convert_tokens_to_ids(REGION_TOKEN)
vlprocessor = Videollama3Processor(vision_encoder.image_processor, tokenizer)
if training_args.bits in [4, 8]:
from peft.tuners.lora import LoraLayer
for name, module in model.named_modules():
if isinstance(module, LoraLayer):
if training_args.bf16:
module = module.to(torch.bfloat16)
if 'norm' in name:
module = module.to(torch.float32)
if 'lm_head' in name or 'embed_tokens' in name:
if hasattr(module, 'weight'):
if training_args.bf16 and module.weight.dtype == torch.float32:
module = module.to(torch.bfloat16)
if local_rank == 0:
print("Current model:", model)
print("Model config:", model.config)
if data_args.use_batch_flattening:
rank0_print('You are using flattening operation to flatten the entire mini batch into a single sequence')
assert model.config._attn_implementation == 'flash_attention_2'
assert version.parse(transformers.__version__) >= version.parse("4.44.0")
data_module = make_flattening_supervised_data_module(vlprocessor=vlprocessor, data_args=data_args)
else:
data_module = make_supervised_data_module(vlprocessor=vlprocessor, data_args=data_args)
# select a Trainer
trainer = VideoLLaMA3Trainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
trainer.save_state()
model.config.use_cache = True
if training_args.lora_enable:
state_dict = get_peft_state_maybe_zero_3(model.named_parameters(), training_args.lora_bias)
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(model.named_parameters())
if training_args.local_rank == 0 or training_args.local_rank == -1:
model.config.save_pretrained(training_args.output_dir)
model.save_pretrained(training_args.output_dir, state_dict=state_dict)
torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin'))
else:
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)
if __name__ == "__main__":
train(attn_implementation="flash_attention_2")
|