Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,942 Bytes
69a1bb9 44d8da2 7dede7c 44d8da2 08aaa9c 7dede7c 44d8da2 7dede7c 44d8da2 08aaa9c 7dede7c 44d8da2 7dede7c 44d8da2 08aaa9c 44d8da2 7dede7c 44d8da2 08aaa9c 7dede7c 44d8da2 7dede7c 44d8da2 7dede7c 44d8da2 08aaa9c 44d8da2 7dede7c 44d8da2 7dede7c 44d8da2 7dede7c 44d8da2 7dede7c 44d8da2 7dede7c 44d8da2 7dede7c 44d8da2 7dede7c 44d8da2 7dede7c 44d8da2 7dede7c 44d8da2 7dede7c 44d8da2 7dede7c 44d8da2 7dede7c 44d8da2 7dede7c 44d8da2 7dede7c 44d8da2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
import spaces
import gradio as gr
import numpy as np
import torch
from transformers import SamModel, SamProcessor
from PIL import Image
import os
import cv2
import argparse
import sys
# This is for making model initialization faster and has no effect since we are loading the weights
sys.path.append('./')
from videollama3 import disable_torch_init, model_init, mm_infer, get_model_output
from videollama3.mm_utils import load_images
from videollama3.mm_utils import load_video
color_rgb = (1.0, 1.0, 1.0)
color_rgbs = [
(1.0, 1.0, 1.0),
(1.0, 0.0, 0.0),
(0.0, 1.0, 1.0),
(0.0, 1.0, 0.0),
(0.0, 0.0, 1.0),
(1.0, 0.0, 1.0),
]
def extract_first_frame_from_video(video):
cap = cv2.VideoCapture(video)
success, frame = cap.read()
cap.release()
if success:
return Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
return None
def extract_points_from_mask(mask_pil):
mask = np.asarray(mask_pil)[..., 0]
coords = np.nonzero(mask)
coords = np.stack((coords[1], coords[0]), axis=1)
return coords
def add_contour(img, mask, color=(1., 1., 1.)):
img = img.copy()
mask = mask.astype(np.uint8) * 255
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img, contours, -1, color, thickness=8)
return img
@spaces.GPU(duration=120)
def generate_masks(image, mask_list, mask_raw_list):
image['image'] = image['background'].convert('RGB')
# del image['background'], image['composite']
assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"
mask = Image.fromarray((np.asarray(image['layers'][0])[..., 3] > 0).astype(np.uint8) * 255).convert('RGB')
points = extract_points_from_mask(mask)
np.random.seed(0)
if points.shape[0] == 0:
raise gr.Error("No points selected")
points_selected_indices = np.random.choice(points.shape[0], size=min(points.shape[0], 8), replace=False)
points = points[points_selected_indices]
coords = [points.tolist()]
mask_np = apply_sam(image['image'], coords)
mask_raw_list.append(mask_np)
mask_image = Image.fromarray((mask_np[:,:,np.newaxis] * np.array(image['image'])).astype(np.uint8))
mask_list.append((mask_image, f"<region{len(mask_list)}>"))
# Return a list containing the mask image.
image['layers'] = []
image['composite'] = image['background']
return mask_list, image, mask_list, mask_raw_list
@spaces.GPU(duration=120)
def generate_masks_video(image, mask_list_video, mask_raw_list_video):
image['image'] = image['background'].convert('RGB')
# del image['background'], image['composite']
assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"
mask = Image.fromarray((np.asarray(image['layers'][0])[..., 3] > 0).astype(np.uint8) * 255).convert('RGB')
points = extract_points_from_mask(mask)
np.random.seed(0)
if points.shape[0] == 0:
raise gr.Error("No points selected")
points_selected_indices = np.random.choice(points.shape[0], size=min(points.shape[0], 8), replace=False)
points = points[points_selected_indices]
coords = [points.tolist()]
mask_np = apply_sam(image['image'], coords)
mask_raw_list_video.append(mask_np)
mask_image = Image.fromarray((mask_np[:,:,np.newaxis] * np.array(image['image'])).astype(np.uint8))
mask_list_video.append((mask_image, f"<object{len(mask_list_video)}>"))
# Return a list containing the mask image.
image['layers'] = []
image['composite'] = image['background']
return mask_list_video, image, mask_list_video, mask_raw_list_video
@spaces.GPU(duration=120)
def describe(image, mode, query, masks):
# Create an image object from the uploaded image
# print(image.keys())
image['image'] = image['background'].convert('RGB')
# del image['background'], image['composite']
assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"
# Handle both hex and rgba color formats
img_np = np.asarray(image['image']).astype(float) / 255.
if mode=='Caption':
mask = Image.fromarray((np.asarray(image['layers'][0])[..., 3] > 0).astype(np.uint8) * 255).convert('RGB')
points = extract_points_from_mask(mask)
np.random.seed(0)
if points.shape[0] == 0:
if len(masks)>1:
raise gr.Error("No points selected")
else:
# Randomly sample 8 points from the mask
# Follow DAM https://github.com/NVlabs/describe-anything
points_selected_indices = np.random.choice(points.shape[0], size=min(points.shape[0], 8), replace=False)
points = points[points_selected_indices]
coords = [points.tolist()]
mask_np = apply_sam(image['image'], coords)
masks = []
masks.append(mask_np)
mask_ids = [0]
img_with_contour_np = add_contour(img_np, mask_np, color=color_rgb)
img_with_contour_pil = Image.fromarray((img_with_contour_np * 255.).astype(np.uint8))
else:
img_with_contour_np = img_np.copy()
mask_ids = []
for i, mask_np in enumerate(masks):
# img_with_contour_np = add_contour(img_with_contour_np, mask_np, color=color_rgbs[i])
# img_with_contour_pil = Image.fromarray((img_with_contour_np * 255.).astype(np.uint8))
img_with_contour_pil = Image.fromarray((img_with_contour_np* 255.).astype(np.uint8))
mask_ids.append(0)
masks = np.stack(masks, axis=0)
masks = torch.from_numpy(masks).to(torch.uint8)
img = np.asarray(image['image'])
if mode == "Caption":
query = '<image>\nPlease describe the <region> in the image in detail.'
else:
if len(masks)==1:
prefix = "<image>\nThere is 1 region in the image: <region0> <region>. "
else:
prefix = f"<image>\nThere is {len(masks)} region in the image: "
for i in range(len(masks)):
prefix += f"<region{i}><region>, "
prefix = prefix[:-2]+'. '
query = prefix + query
# print(query)
image['layers'] = []
image['composite'] = image['background']
text = ""
yield img_with_contour_pil, text, image
for token in get_model_output(
[img],
query,
model=model,
tokenizer=tokenizer,
masks=masks,
mask_ids=mask_ids,
modal='image',
image_downsampling=1,
streaming=True,
):
text += token
yield gr.update(), text, gr.update()
def load_first_frame(video_path):
cap = cv2.VideoCapture(video_path)
ret, frame = cap.read()
cap.release()
if not ret:
raise gr.Error("Could not read the video file.")
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image = Image.fromarray(frame)
return image
@spaces.GPU(duration=120)
def describe_video(video_path, mode, query, annotated_frame, masks, mask_list_video):
# Create a temporary directory to save extracted video frames
cap = cv2.VideoCapture(video_path)
video_tensor = load_video(video_path, fps=4, max_frames=768, frame_ids=[0])
annotated_frame['image'] = annotated_frame['background'].convert('RGB')
# Process the annotated frame from the image editor
if isinstance(annotated_frame, dict):
# Get the composite image with annotations
frame_img = annotated_frame.get("image", annotated_frame.get("background"))
if frame_img is None:
raise gr.Error("No valid annotation found in the image editor.")
frame_img = frame_img.convert("RGB")
# Get the annotation layer
if "layers" in annotated_frame and len(annotated_frame["layers"]) > 0:
mask = Image.fromarray((np.asarray(annotated_frame["layers"][0])[..., 3] > 0).astype(np.uint8) * 255).convert("RGB")
else:
mask = Image.new("RGB", frame_img.size, 0)
else:
frame_img = annotated_frame.convert("RGB")
mask = Image.new("RGB", frame_img.size, 0)
img_np = np.asarray(annotated_frame['image']).astype(float) / 255.
# Extract points from the annotated mask (using the first channel)
if mode == "Caption":
points = extract_points_from_mask(mask)
np.random.seed(0)
if points.shape[0] == 0:
raise gr.Error("No points were selected in the annotation.")
# Randomly select up to 8 points
# Follow DAM https://github.com/NVlabs/describe-anything
points_selected_indices = np.random.choice(points.shape[0], size=min(points.shape[0], 8), replace=False)
points = points[points_selected_indices]
# print(f"Selected points (to SAM): {points}")
coords = [points.tolist()]
mask_np = apply_sam(annotated_frame['image'], coords)
masks = []
masks.append(mask_np)
mask_ids = [0]
# img_with_contour_np = add_contour(img_np, mask_np, color=color_rgb)
# img_with_contour_pil = Image.fromarray((img_with_contour_np * 255.).astype(np.uint8))
else:
img_with_contour_np = img_np.copy()
mask_ids = []
for i, mask_np in enumerate(masks):
# img_with_contour_np = add_contour(img_with_contour_np, mask_np, color=color_rgbs[i])
# img_with_contour_pil = Image.fromarray((img_with_contour_np * 255.).astype(np.uint8))
mask_ids.append(0)
masks = np.stack(masks, axis=0)
masks = torch.from_numpy(masks).to(torch.uint8)
if mode == "Caption":
query = '<video>\nPlease describe the <region> in the video in detail.'
else:
if len(masks)==1:
prefix = "<video>\nThere is 1 object in the video: <object0> <region>. "
else:
prefix = f"<video>\nThere is {len(masks)} objects in the video: "
for i in range(len(masks)):
prefix += f"<object{i}><region>, "
prefix = prefix[:-2]+'. '
query = prefix + query
# Initialize empty text
# text = description_generator
annotated_frame['layers'] = []
annotated_frame['composite'] = annotated_frame['background']
if mode=="Caption":
mask_list_video = []
mask_image = Image.fromarray((mask_np[:,:,np.newaxis] * np.array(annotated_frame['image'])).astype(np.uint8))
mask_list_video.append((mask_image, f"<object{len(mask_list_video)}>"))
text = ""
yield frame_img, text, mask_list_video, mask_list_video
for token in get_model_output(
video_tensor,
query,
model=model,
tokenizer=tokenizer,
masks=masks,
mask_ids=mask_ids,
modal='video',
streaming=True,
):
text += token
yield gr.update(), text, gr.update(), gr.update()
@spaces.GPU(duration=120)
def apply_sam(image, input_points):
inputs = sam_processor(image, input_points=input_points, return_tensors="pt").to(device)
with torch.no_grad():
outputs = sam_model(**inputs)
masks = sam_processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu())[0][0]
scores = outputs.iou_scores[0, 0]
mask_selection_index = scores.argmax()
mask_np = masks[mask_selection_index].numpy()
return mask_np
def clear_masks():
return [], [], []
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="VideoRefer gradio demo")
parser.add_argument("--model-path", type=str, default="DAMO-NLP-SG/VideoRefer-VideoLLaMA3-7B", help="Path to the model checkpoint")
parser.add_argument("--prompt-mode", type=str, default="focal_prompt", help="Prompt mode")
parser.add_argument("--conv-mode", type=str, default="v1", help="Conversation mode")
parser.add_argument("--temperature", type=float, default=0.2, help="Sampling temperature")
parser.add_argument("--top_p", type=float, default=0.5, help="Top-p for sampling")
args_cli = parser.parse_args()
with gr.Blocks(theme=gr.themes.Soft(primary_hue="amber")) as demo:
mask_list = gr.State([])
mask_raw_list = gr.State([])
mask_list_video = gr.State([])
mask_raw_list_video = gr.State([])
HEADER = ("""
<div>
<h1>VideoRefer X VideoLLaMA3 Demo</h1>
<h5 style="margin: 0;">Feel free to click on anything that grabs your interest!</h5>
<h5 style="margin: 0;">If this demo please you, please give us a star โญ on Github or ๐ on this space.</h5>
</div>
</div>
<div style="display: flex; justify-content: left; margin-top: 10px;">
<a href="https://arxiv.org/pdf/2501.00599"><img src="https://img.shields.io/badge/Arxiv-2501.00599-ECA8A7" style="margin-right: 5px;"></a>
<a href="https://github.com/DAMO-NLP-SG/VideoRefer"><img src='https://img.shields.io/badge/Github-VideoRefer-F7C97E' style="margin-right: 5px;"></a>
<a href="https://github.com/DAMO-NLP-SG/VideoLLaMA3"><img src='https://img.shields.io/badge/Github-VideoLLaMA3-9DC3E6' style="margin-right: 5px;"></a>
</div>
""")
with gr.Row():
with gr.Column():
gr.HTML(HEADER)
image_tips = """
### ๐ก Tips:
๐งธ Upload an image, and you can use the drawing toolโ๏ธ to highlight the areas you're interested in.
๐ For single-object caption mode, simply select the area and click the 'Generate Caption' button to receive a caption for the object.
๐ In QA mode, you can generate multiple masks by clicking the 'Generate Mask' button multiple times. Afterward, use the corresponding object id to ask questions.
๐ Click the button 'Clear Masks' to clear the current generated masks.
"""
video_tips = """
### ๐ก Tips:
โ ๏ธ For video mode, we only support masking on the first frame in this demo.
๐งธ Upload an video, and you can use the drawing toolโ๏ธ to highlight the areas you're interested in the first frame.
๐ For single-object caption mode, simply select the area and click the 'Generate Caption' button to receive a caption for the object.
๐ In QA mode, you can generate multiple masks by clicking the 'Generate Mask' button multiple times. Afterward, use the corresponding object id to ask questions.
๐ Click the button 'Clear Masks' to clear the current generated masks.
"""
with gr.TabItem("Image"):
with gr.Row():
with gr.Column():
image_input = gr.ImageEditor(
label="Image",
type="pil",
sources=['upload'],
brush=gr.Brush(colors=["#ED7D31"], color_mode="fixed", default_size=10),
eraser=True,
layers=False,
transforms=[],
height=300,
)
generate_mask_btn = gr.Button("1๏ธโฃ Generate Mask", visible=False, variant="primary")
mode = gr.Radio(label="Mode", choices=["Caption", "QA"], value="Caption")
query = gr.Textbox(label="Question", value="What is the relationship between <region0> and <region1>?", interactive=True, visible=False)
submit_btn = gr.Button("Generate Caption", variant="primary")
submit_btn1 = gr.Button("2๏ธโฃ Generate Answer", variant="primary", visible=False)
gr.Examples([f"./demo/images/{i+1}.jpg" for i in range(8)], inputs=image_input, label="Examples")
with gr.Column():
mask_output = gr.Gallery(label="Referred Masks", object_fit='scale-down', visible=False)
output_image = gr.Image(label="Image with Mask", visible=True, height=400)
description = gr.Textbox(label="Output", visible=True)
clear_masks_btn = gr.Button("Clear Masks", variant="secondary", visible=False)
gr.Markdown(image_tips)
with gr.TabItem("Video"):
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Video")
# load_btn = gr.Button("๐ผ๏ธ Load First Frame", variant="secondary")
first_frame = gr.ImageEditor(
label="Annotate First Frame",
type="pil",
sources=['upload'],
brush=gr.Brush(colors=["#ED7D31"], color_mode="fixed", default_size=10),
eraser=True,
layers=False,
transforms=[],
height=300,
)
generate_mask_btn_video = gr.Button("1๏ธโฃ Generate Mask", visible=False, variant="primary")
gr.Examples([f"./demo/videos/{i+1}.mp4" for i in range(4)], inputs=video_input, label="Examples")
with gr.Column():
mode_video = gr.Radio(label="Mode", choices=["Caption", "QA"], value="Caption")
mask_output_video = gr.Gallery(label="Referred Masks", object_fit='scale-down')
query_video = gr.Textbox(label="Question", value="What is the relationship between <object0> and <object1>?", interactive=True, visible=False)
submit_btn_video = gr.Button("Generate Caption", variant="primary")
submit_btn_video1 = gr.Button("2๏ธโฃ Generate Answer", variant="primary", visible=False)
description_video = gr.Textbox(label="Output", visible=True)
clear_masks_btn_video = gr.Button("Clear Masks", variant="secondary")
gr.Markdown(video_tips)
def toggle_query_and_generate_button(mode):
query_visible = mode == "QA"
caption_visible = mode == "Caption"
return gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=caption_visible), gr.update(visible=caption_visible), [], "", [], [],[],[]
video_input.change(load_first_frame, inputs=video_input, outputs=first_frame)
mode.change(toggle_query_and_generate_button, inputs=mode, outputs=[query, generate_mask_btn, clear_masks_btn, submit_btn1, mask_output, output_image, submit_btn, mask_output, description, mask_list, mask_raw_list, mask_list_video, mask_raw_list_video])
def toggle_query_and_generate_button_video(mode):
query_visible = mode == "QA"
caption_visible = mode == "Caption"
return gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=caption_visible), [], [], [], [], []
mode_video.change(toggle_query_and_generate_button_video, inputs=mode_video, outputs=[query_video, generate_mask_btn_video, submit_btn_video1, submit_btn_video, mask_output_video, mask_list, mask_raw_list, mask_list_video, mask_raw_list_video])
submit_btn.click(
fn=describe,
inputs=[image_input, mode, query, mask_raw_list],
outputs=[output_image, description, image_input],
api_name="describe"
)
submit_btn1.click(
fn=describe,
inputs=[image_input, mode, query, mask_raw_list],
outputs=[output_image, description, image_input],
api_name="describe"
)
generate_mask_btn.click(
fn=generate_masks,
inputs=[image_input, mask_list, mask_raw_list],
outputs=[mask_output, image_input, mask_list, mask_raw_list]
)
generate_mask_btn_video.click(
fn=generate_masks_video,
inputs=[first_frame, mask_list_video, mask_raw_list_video],
outputs=[mask_output_video, first_frame, mask_list_video, mask_raw_list_video]
)
clear_masks_btn.click(
fn=clear_masks,
outputs=[mask_output, mask_list, mask_raw_list]
)
clear_masks_btn_video.click(
fn=clear_masks,
outputs=[mask_output_video, mask_list_video, mask_raw_list_video]
)
submit_btn_video.click(
fn=describe_video,
inputs=[video_input, mode_video, query_video, first_frame, mask_raw_list_video, mask_list_video],
outputs=[first_frame, description_video, mask_output_video, mask_list_video],
api_name="describe_video"
)
submit_btn_video1.click(
fn=describe_video,
inputs=[video_input, mode_video, query_video, first_frame, mask_raw_list_video, mask_list_video],
outputs=[first_frame, description_video, mask_output_video, mask_list_video],
api_name="describe_video"
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sam_model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
disable_torch_init()
model, processor, tokenizer = model_init(args_cli.model_path)
demo.launch()
|