Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Qwen2VL model configuration""" | |
import os | |
from typing import Union | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
class Qwen2VLVisionConfig(PretrainedConfig): | |
model_type = "qwen2_vl" | |
def __init__( | |
self, | |
depth=32, | |
embed_dim=1280, | |
hidden_size=3584, | |
hidden_act="quick_gelu", | |
mlp_ratio=4, | |
num_heads=16, | |
in_channels=3, | |
patch_size=14, | |
spatial_merge_size=2, | |
temporal_patch_size=2, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.depth = depth | |
self.embed_dim = embed_dim | |
self.hidden_size = hidden_size | |
self.hidden_act = hidden_act | |
self.mlp_ratio = mlp_ratio | |
self.num_heads = num_heads | |
self.in_channels = in_channels | |
self.patch_size = patch_size | |
self.spatial_merge_size = spatial_merge_size | |
self.temporal_patch_size = temporal_patch_size | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# if config_dict.get("model_type") == "qwen2_vl": | |
# config_dict = config_dict["vision_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |