lixin4ever's picture
init (#1)
44d8da2 verified
raw
history blame
34.5 kB
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import copy
import json
import os
import pathlib
import random
import re
import sys
import warnings
import traceback
from packaging import version
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Sequence
import numpy as np
# torch-related packages
# NOTE: torch must be imported before transformers. Otherwise, `Segmentation fault (core dumped)` will occur.
import torch
import transformers
from packaging import version
from datasets import load_dataset, concatenate_datasets
from torch.utils.data import Dataset
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
sys.path.append('./')
from videollama3.constants import (IGNORE_INDEX, MODAL_INDEX_MAP,
NUM_FRAMES, DEFAULT_IMAGE_TOKEN, STREAM_MAX_FRAMES,
STREAM_DOWNSAMPLING, STREAM_FPS, STREAM_IMAGE_SIZE,
STREAM_START_TOKEN, STREAM_END_TOKEN, REGION_TOKEN)
from videollama3.mm_utils import (load_images, load_video,
tokenizer_multimodal_token, annToMask, resize_image_mask)
from videollama3.model import *
from videollama3.videollama3_trainer import (
VideoLLaMA3Trainer, find_all_linear_names, get_peft_state_maybe_zero_3,
get_peft_state_non_lora_maybe_zero_3, safe_save_model_for_hf_trainer)
from videollama3.model.processor import Videollama3Processor
# NOTE: fast tokenizer warning issue: https://github.com/huggingface/transformers/issues/5486
os.environ["TOKENIZERS_PARALLELISM"] = "true"
local_rank = None
def rank0_print(*args):
if local_rank == 0:
print(*args)
def set_seed(seed=42):
"""
Set the random seed for reproducible results.
:param seed: An integer value to be used as the random seed.
"""
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # for multi-GPU setups
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def int_with_none(value):
if value == 'None':
return None
return int(value)
@dataclass
class ModelArguments:
# LLM Arguments
model_type: Optional[str] = field(default="videollama3", metadata={"help": "Model type selected in the list: " + ", ".join(VLLMs.keys())})
model_path: Optional[str] = field(default="lmsys/vicuna-7b-v1.5")
version: Optional[str] = field(default="v1", metadata={"help": "Version of the conversation template."})
freeze_backbone: bool = field(default=False, metadata={"help": "Whether to freeze the LLM backbone."})
# Connector Arguments
mm_projector_type: Optional[str] = field(default='linear')
pretrain_mm_projector: Optional[str] = field(default=None)
# Vision tower Arguments
vision_encoder: Optional[str] = field(default=None)
mm_vision_select_layer: Optional[int] = field(default=-1)
mm_vision_select_feature: Optional[str] = field(default="patch")
mm_attn_implementation: Optional[str] = field(default="flash_attention_2")
# Token downsampling Arguments
spatial_merge_size: Optional[int] = field(default=1)
mm_max_length: Optional[int] = field(default=9477)
use_token_compression: Optional[bool] = field(default=False)
@dataclass
class DataArguments:
# Path Arguments
data_path: List[str] = field(default=None, metadata={"help": "Path to the training data."})
# image_folder: Optional[str] = field(default=None)
# video_folder: Optional[str] = field(default=None)
data_folder: Optional[str] = field(default=None)
# Loading Arguments
is_multimodal: bool = False
fps: Optional[int] = field(default=None)
max_frames: Optional[int_with_none] = field(default=None)
# Preprocess Arguments
image_aspect_ratio: str = 'square'
use_batch_flattening: bool = field(default=True, metadata={"help": "Whether to flatten the in-batch sequences of variable lengths."})
dataset_cache_dir: Optional[str] = field(default=None)
@dataclass
class TrainingArguments(transformers.TrainingArguments):
# shut auto processing (_remove_unused_columns) of transformers Trainer
remove_unused_columns: bool = field(default=False)
optim: str = field(default="adamw_torch")
# Training learning rate Arguments
vision_encoder_lr: Optional[float] = None
mm_projector_lr: Optional[float] = None
llm_lr: Optional[float] = None
region_encoder_lr: Optional[float] = None
# Training Data Arguments
group_by_modality_length: bool = field(default=False)
model_max_length: int = field(
default=512,
metadata={
"help":
"Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
# Lora or Quant Arguments
double_quant: bool = field(
default=True,
metadata={"help": "Compress the quantization statistics through double quantization."}
)
quant_type: str = field(
default="nf4",
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}
)
bits: int = field(
default=16,
metadata={"help": "How many bits to use."}
)
lora_enable: bool = False
lora_r: int = 64
lora_alpha: int = 16
lora_dropout: float = 0.05
lora_weight_path: str = ""
lora_bias: str = "none"
class LazySupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, data_path: str, vlprocessor, data_args: DataArguments):
super(LazySupervisedDataset, self).__init__()
data_objs = []
# try:
# for data in data_path:
# # NOTE: load_dataset can process both json or jsonl files
# if data.endswith(".json") or data.endswith(".jsonl"):
# data_objs.append(load_dataset("json", data_files=data, cache_dir=data_args.dataset_cache_dir)["train"])
# else:
# raise Exception(f"Unsupported file format (<{data}>)!")
# list_data_dict = concatenate_datasets(data_objs)
# except:
traceback.print_exc()
# NOTE: compatible with the old version
list_data_dict = []
for data in data_path:
if data.endswith(".json"):
data = json.load(open(data, "r"))
for i in data:
i['id'] = len(list_data_dict)
list_data_dict.append(i)
elif data.endswith(".jsonl"):
with open(data, "r", encoding="utf-8") as fp:
for line in fp:
line = line.strip()
obj = json.loads(line)
obj["id"] = len(list_data_dict)
list_data_dict.append(obj)
else:
raise Exception(f"Unsupported file format (<{data}>)!!!")
rank0_print("Formatting inputs...Skip in lazy mode")
self.vlprocessor = vlprocessor
self.list_data_dict = list_data_dict
self.data_args = data_args
def __len__(self):
return len(self.list_data_dict)
@property
def lengths(self):
length_list = []
for sample in self.list_data_dict:
img_tokens = 576 if 'image' in sample else 0
length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens)
return length_list
@property
def modality_lengths(self):
length_list = []
for sample in self.list_data_dict:
cur_len = sum(len(conv['value'].split()) for conv in sample['conversations'])
cur_len = cur_len if 'image' in sample else -cur_len
length_list.append(cur_len)
return length_list
def _convert_normal(self, data_dict):
data_folder = self.data_args.data_folder
conversation = copy.deepcopy(data_dict["conversations"])
# data sanity check and repair
start_idx = 0
for sentence in conversation:
if sentence["from"] == "human" or sentence["from"] == "system":
break
start_idx += 1
if start_idx > 0:
warnings.warn(f"Find {start_idx} non-user sentences at the beginning of the conversation, remove them automatically!")
conversation = conversation[start_idx:]
assert len(conversation) > 1, f"Invalid conversation"
additional_frames = []
mask_ids = []
if 'image' in data_dict and data_dict['image'] is not None:
modal = 'image'
if all(not "<image>" in sentence["value"] for sentence in conversation):
warnings.warn(f"Image tag not found in the conversation, add it automatically at the beginning!")
conversation[0]["value"] = "<image>" + conversation[0]["value"]
image_file = data_dict['image']
if isinstance(image_file, list):
image_file = [os.path.join(data_folder, f) for f in image_file]
else:
image_file = os.path.join(data_folder, image_file)
images = load_images(image_file)
masks = []
if 'masks' in data_dict and data_dict['masks'] is not None and len(data_dict['masks'])>0:
if 'height' in data_dict:
h = data_dict['height']
w = data_dict['width']
else:
h = None
w = None
for ann in data_dict['masks']:
mask = annToMask(ann, h, w)
masks.append(mask)
mask_ids.append(0)
masks = np.stack(masks, axis=0)
masks = torch.from_numpy(masks)
additional_frames = images.copy()
else:
masks = None
elif 'video' in data_dict and data_dict['video'] is not None:
modal = 'video'
if all(not "<video>" in sentence["value"] for sentence in conversation):
warnings.warn(f"Video tag not found in the conversation, add it automatically at the beginning!")
conversation[0]["value"] = "<video>" + conversation[0]["value"]
video_file = data_dict['video']
masks = []
frame_ids = []
if 'masks' in data_dict and data_dict['masks'] is not None:
if 'height' in data_dict:
h = data_dict['height']
w = data_dict['width']
else:
h = None
w = None
for ann in data_dict['masks']:
for k in ann.keys():
if int(k) not in frame_ids:
frame_ids.append(int(k))
mask_ids.append(frame_ids.index(int(k)))
mask = annToMask(ann[k], h, w)
masks.append(mask)
masks = np.stack(masks, axis=0)
masks = torch.from_numpy(masks)
else:
masks = None
if isinstance(video_file, list) and len(video_file) == 1:
video_file = os.path.join(data_folder, video_file[0])
images, timestamps, additional_frames = load_video(video_file, fps=self.data_args.fps, max_frames=self.data_args.max_frames, frame_ids=frame_ids)
elif isinstance(video_file, list) and len(video_file)>1: #images
images = []
for vf in video_file:
images+=load_images(os.path.join(data_folder, vf))
timestamps = data_dict['timestamps']
additional_frames = []
for mv in data_dict['masked_video']:
additional_frames+=load_images(os.path.join(data_folder, mv))
else:
raise ValueError(f"Unsupported video format: {video_file}")
else:
modal = 'text'
images = []
masks = None
if masks is not None and len(masks)>0:
additional_frames, masks, mask_nums = resize_image_mask(additional_frames, masks, mask_ids)
conv_i = 0
for idx in range(len(mask_nums)):
while '<region>' not in conversation[conv_i]['value']:
conv_i+=1
conversation[conv_i]['value'] = conversation[conv_i]['value'].replace('<region>', "["+REGION_TOKEN*mask_nums[idx]+"]", 1)
messages = []
for conv in conversation:
if conv["from"] == "human":
# replace video tag to image tag for unified processing
# conv["value"] = conv["value"].replace("<video>", "<image>" * len(images))
chunks = conv["value"].split("<image>" if modal == 'image' else "<video>")
messages.append({
"role": "user",
"content": []
})
for chunk_idx in range(1, 2 * len(chunks)):
if chunk_idx % 2 == 1:
chunk = chunks[chunk_idx // 2].strip()
messages[-1]["content"].append({"type": "text", "text": chunk}) if chunk else None
else:
if modal == 'image':
messages[-1]["content"].append({"type": "image"})
elif modal == 'video':
messages[-1]["content"].append({"type": "video", "num_frames": len(images), "time": timestamps})
else:
messages.append({
"role": "assistant",
"content": conv['value']
})
# TODO: dynamic downsampling
# image_downsampling = self.data_args.spatial_merge_size
image_downsampling = self.data_args.spatial_merge_size if modal == "video" else 1
# if modal == 'video':
# image_downsampling = 2
# else:
# # image/text
# image_downsampling = 1
return modal, images, messages, image_downsampling, masks, additional_frames
def _convert_stream(self, data_dict):
video_path = os.path.join(self.data_args.data_folder, data_dict['video'][0])
frames, timestamps = load_video(
video_path=video_path,
start_time=data_dict["start_time"],
end_time=data_dict["end_time"],
fps=self.data_args.fps,
max_frames=self.data_args.max_frames,
size=STREAM_IMAGE_SIZE,
# size_divisible=14 * STREAM_DOWNSAMPLING,
)
if len(frames) > STREAM_MAX_FRAMES:
max_time = timestamps[STREAM_MAX_FRAMES]
frames = frames[:STREAM_MAX_FRAMES]
timestamps = timestamps[:STREAM_MAX_FRAMES]
else:
max_time = float("inf")
messages = []
frame_idx = 0
conversation = copy.deepcopy(data_dict["conversation"])
for message in conversation:
if message["time"] >= max_time:
break
while frame_idx < len(timestamps) and timestamps[frame_idx] <= message["time"]:
messages.append({
"role": "stream",
"content": [{"type": "image", "time": timestamps[frame_idx] - data_dict["start_time"]}],
})
frame_idx += 1
messages.append(message)
frames = frames[:frame_idx]
# return "video", frames, messages, STREAM_DOWNSAMPLING
return "video", frames, messages, self.data_args.spatial_merge_size
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
data_dict = self.list_data_dict[i]
try:
if "stream" in data_dict and data_dict["stream"]:
modal, images, messages, image_downsampling = self._convert_stream(data_dict)
else:
modal, images, messages, image_downsampling, masks, additional_frames = self._convert_normal(data_dict)
data_dict = self.vlprocessor(
images=images,
text=messages,
image_downsampling=image_downsampling,
return_labels=True,
return_tensors="pt",
)
if len(additional_frames)>0:
additional_images_dict = self.vlprocessor._process_image(additional_frames, num_images=1, image_downsampling=1)
additional_images = additional_images_dict['images']
additional_images_thws = additional_images_dict['grid_thws']
else:
additional_images = []
additional_images_thws = []
if modal == 'text':
unit_size = self.vlprocessor.image_processor.patch_size**2 * 3 * self.vlprocessor.image_processor.temporal_patch_size
data_dict['images'] = [torch.zeros(self.data_args.spatial_merge_size**2, unit_size)]
data_dict['grid_thws'] = [torch.tensor([[1, self.data_args.spatial_merge_size, self.data_args.spatial_merge_size]])]
elif modal == 'image' or modal == 'video':
assert len(data_dict['images']) > 0 and len(data_dict['grid_thws']) > 0, f"Invalid image data: {data_dict['images']}, {data_dict['grid_thws']}"
data_dict['modal'] = modal
data_dict['masks'] = masks
data_dict['additional_images'] = additional_images
data_dict['additional_images_thws'] = additional_images_thws
except Exception as e:
traceback.print_exc()
backup_idx = random.randint(0, len(self.list_data_dict) - 1)
print(f"Encounted error when process {i}-th example: {data_dict}, use {backup_idx}-th example instead!!!")
return self.__getitem__(backup_idx)
return data_dict
@dataclass
class DataCollatorForSupervisedDataset(object):
"""Collate examples for supervised fine-tuning."""
vlprocessor: transformers.ProcessorMixin
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
input_ids, labels = tuple([instance[key] for instance in instances]
for key in ("input_ids", "labels"))
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids,
batch_first=True,
padding_value=self.vlprocessor.tokenizer.pad_token_id)
labels = torch.nn.utils.rnn.pad_sequence(labels,
batch_first=True,
padding_value=IGNORE_INDEX)
input_ids = input_ids[:, :self.vlprocessor.tokenizer.model_max_length]
labels = labels[:, :self.vlprocessor.tokenizer.model_max_length]
batch = dict(
input_ids=input_ids,
labels=labels,
attention_mask=input_ids.ne(self.vlprocessor.tokenizer.pad_token_id),
)
# work for 'images' argument in `prepare_inputs_labels_for_multimodal`
batch['images'] = []
batch['additional_images'] = []
batch["masks"] = []
mask_idx_start = 0
for instance in instances:
# for modal_token in MODAL_INDEX_MAP.keys():
# modal_token = modal_token.lower()
# # MODAL_TOKEN shape like: <image>, <video>, ...
# modal_name = re.findall(f'[<](.*)[>]', modal_token)
# assert len(modal_name) == 1
# modal_name = modal_name[0]
batch['images'].append((instance['modal'], instance['images'], instance['grid_thws']))
if len(instance['additional_images'])>0:
batch['additional_images'].append((instance['additional_images'], instance['additional_images_thws']))
if instance["masks"] is not None:
batch["masks"].append(instance["masks"])
mask_idx_start+=len(instance['additional_images'])
return batch
def make_supervised_data_module(vlprocessor, data_args) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
train_dataset = LazySupervisedDataset(
vlprocessor=vlprocessor,
data_path=data_args.data_path,
data_args=data_args
)
data_collator = DataCollatorForSupervisedDataset(vlprocessor=vlprocessor)
return dict(train_dataset=train_dataset,
eval_dataset=None,
data_collator=data_collator)
@dataclass
class DataCollatorWithFlatteningForSupervisedDataset(object):
"""Collate examples for batch flattened supervised fine-tuning."""
vlprocessor: transformers.ProcessorMixin
def __call__(self, instances: Sequence[Dict], separator_id=-100) -> Dict[str, torch.Tensor]:
input_ids, labels = tuple([instance[key] for instance in instances]
for key in ("input_ids", "labels"))
new_input_ids = []
new_labels = []
position_ids = []
for idx in range(0, len(input_ids)):
new_input_ids.append(input_ids[idx][:self.vlprocessor.tokenizer.model_max_length])
temp_label = labels[idx][:self.vlprocessor.tokenizer.model_max_length]
temp_label[0] = separator_id
new_labels.append(temp_label)
position_ids.append(torch.tensor(list(range(len(input_ids[idx][:self.vlprocessor.tokenizer.model_max_length])))))
new_input_ids = torch.cat(new_input_ids)
new_labels = torch.cat(new_labels)
position_ids = torch.cat(position_ids)
batch = dict(
input_ids=new_input_ids.unsqueeze(0),
labels=new_labels.unsqueeze(0),
position_ids=position_ids.unsqueeze(0),
)
# work for 'images' argument in `prepare_inputs_labels_for_multimodal`
batch['images'] = []
batch['additional_images'] = []
# mask_idx_start = 0
for instance in instances:
batch['images'].append((instance['modal'], instance['images'], instance['grid_thws']))
if len(instance['additional_images'])>0:
batch['additional_images'].append((instance['additional_images'], instance['additional_images_thws']))
# mask_idx_start+=len(instance['additional_images'])
batch["masks"] = [x["masks"] for x in instances]
return batch
def make_flattening_supervised_data_module(vlprocessor: transformers.ProcessorMixin, data_args) -> Dict:
"""Make batch flattened dataset and collator for supervised fine-tuning."""
train_dataset = LazySupervisedDataset(
vlprocessor=vlprocessor,
data_path=data_args.data_path,
data_args=data_args
)
data_collator = DataCollatorWithFlatteningForSupervisedDataset(vlprocessor=vlprocessor)
return dict(train_dataset=train_dataset,
eval_dataset=None,
data_collator=data_collator)
def train(attn_implementation=None):
global local_rank
set_seed(42)
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
local_rank = training_args.local_rank
if local_rank == 0:
print('------model args------')
print(model_args)
print('------data args------')
print(data_args)
print('------training args------')
print(training_args)
compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
bnb_model_from_pretrained_args = {}
if training_args.bits in [4, 8]:
from transformers import BitsAndBytesConfig
bnb_model_from_pretrained_args.update(dict(
# device_map={"": training_args.device},
# BUG: High version transformers report error:
# ValueError: You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing `quantization_config` argument at the same time
# load_in_4bit=training_args.bits == 4,
# load_in_8bit=training_args.bits == 8,
quantization_config=BitsAndBytesConfig(
load_in_4bit=training_args.bits == 4,
load_in_8bit=training_args.bits == 8,
llm_int8_skip_modules=["mm_projector"],
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=training_args.double_quant,
bnb_4bit_quant_type=training_args.quant_type, # {'fp4', 'nf4'}
bnb_4bit_quant_storage=compute_dtype,
)
))
config = VLLMConfigs[model_args.model_type].from_pretrained(model_args.model_path)
config._attn_implementation = attn_implementation
# NOTE: active spatial_merge_size arguments
config.spatial_merge_size = model_args.spatial_merge_size
config.mm_max_length = model_args.mm_max_length
config.use_token_compression = model_args.use_token_compression
if model_args.vision_encoder is not None:
model = VLLMs[model_args.model_type].from_pretrained(
model_args.model_path,
config=config,
torch_dtype=compute_dtype,
do_sample=True,
**bnb_model_from_pretrained_args
)
if 'mixtral' in model_args.model_type:
import deepspeed
deepspeed.utils.set_z3_leaf_modules(model, [MixtralSparseMoeBlock])
else:
model = transformers.LlamaForCausalLM.from_pretrained(
model_args.model_path,
config=config,
torch_dtype=compute_dtype,
do_sample=True,
**bnb_model_from_pretrained_args
)
model.config.use_cache = False
if model_args.freeze_backbone:
model.model.requires_grad_(False)
if training_args.bits in [4, 8]:
from peft import prepare_model_for_kbit_training
model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing)
if training_args.gradient_checkpointing:
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
if training_args.lora_enable:
from peft import LoraConfig, get_peft_model
lora_config = LoraConfig(
r=training_args.lora_r,
lora_alpha=training_args.lora_alpha,
target_modules=find_all_linear_names(model),
lora_dropout=training_args.lora_dropout,
bias=training_args.lora_bias,
task_type="CAUSAL_LM",
)
if training_args.bits == 16:
if training_args.bf16:
model.to(torch.bfloat16)
if training_args.fp16:
model.to(torch.float16)
rank0_print("Adding LoRA adapters...")
model = get_peft_model(model, lora_config)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_path,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=True,
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.unk_token
if model_args.vision_encoder is not None:
# initialize vision encoder + multi-modal projector
model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp)
vision_encoder = model.get_vision_encoder()
vision_encoder.to(dtype=compute_dtype, device=training_args.device)
mm_projector = model.get_mm_projector()
mm_projector.to(dtype=compute_dtype if training_args.bf16 else torch.float16, device=training_args.device)
data_args.is_multimodal = True
model.config.tokenizer_padding_side = tokenizer.padding_side
model.config.tokenizer_model_max_length = tokenizer.model_max_length
if training_args.bits in [4, 8]:
model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device)
# decoupled learning rate
model.config.llm_lr = training_args.llm_lr
model.config.vision_encoder_lr = training_args.vision_encoder_lr
model.config.mm_projector_lr = training_args.mm_projector_lr
model.config.region_encoder_lr = training_args.region_encoder_lr
if model.config.llm_lr is None:
for p in model.get_model().parameters():
p.requires_grad = False
for p in model.get_model().vision_encoder.parameters():
p.requires_grad = True
for p in model.get_model().mm_projector.parameters():
p.requires_grad = True
for p in model.get_model().region_encoder.parameters():
p.requires_grad = True
if model.config.vision_encoder_lr is None:
for p in model.get_model().vision_encoder.parameters():
p.requires_grad = False
if model.config.mm_projector_lr is None:
for p in model.get_model().mm_projector.parameters():
p.requires_grad = False
if model.config.region_encoder_lr is None:
for p in model.get_model().region_encoder.parameters():
p.requires_grad = False
model.config.max_frames = getattr(data_args, 'max_frames', NUM_FRAMES)
model.config.image_aspect_ratio = data_args.image_aspect_ratio if 'qwen2vl' not in model_args.vision_encoder else 'qwen2vl'
# NOTE: complement data_args via model hyperparameters
# 1. acquire image size
model.config.image_size = data_args.image_size = vision_encoder.image_size
# 2. calculate the number of tokens in the image
model.config.image_token_length = data_args.image_token_length = mm_projector.cal_proj_size(vision_encoder.num_patches_per_side)
# 3. check if alignment
model.config.is_alignment = training_args.is_alignment = data_args.is_alignment = (
model.config.mm_projector_lr is not None and
model.config.llm_lr is None and
model.config.vision_encoder_lr is None
)
# 4. set spatial merge size as default
model.config.spatial_merge_size = data_args.spatial_merge_size = model_args.spatial_merge_size
tokenizer.add_tokens([DEFAULT_IMAGE_TOKEN, STREAM_START_TOKEN, STREAM_END_TOKEN], special_tokens=True)
tokenizer.add_tokens([REGION_TOKEN], special_tokens=True)
model.resize_token_embeddings(len(tokenizer))
model.config.image_token_index = tokenizer.convert_tokens_to_ids(DEFAULT_IMAGE_TOKEN)
model.config.region_token_index = tokenizer.convert_tokens_to_ids(REGION_TOKEN)
vlprocessor = Videollama3Processor(vision_encoder.image_processor, tokenizer)
if training_args.bits in [4, 8]:
from peft.tuners.lora import LoraLayer
for name, module in model.named_modules():
if isinstance(module, LoraLayer):
if training_args.bf16:
module = module.to(torch.bfloat16)
if 'norm' in name:
module = module.to(torch.float32)
if 'lm_head' in name or 'embed_tokens' in name:
if hasattr(module, 'weight'):
if training_args.bf16 and module.weight.dtype == torch.float32:
module = module.to(torch.bfloat16)
if local_rank == 0:
print("Current model:", model)
print("Model config:", model.config)
if data_args.use_batch_flattening:
rank0_print('You are using flattening operation to flatten the entire mini batch into a single sequence')
assert model.config._attn_implementation == 'flash_attention_2'
assert version.parse(transformers.__version__) >= version.parse("4.44.0")
data_module = make_flattening_supervised_data_module(vlprocessor=vlprocessor, data_args=data_args)
else:
data_module = make_supervised_data_module(vlprocessor=vlprocessor, data_args=data_args)
# select a Trainer
trainer = VideoLLaMA3Trainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
trainer.save_state()
model.config.use_cache = True
if training_args.lora_enable:
state_dict = get_peft_state_maybe_zero_3(model.named_parameters(), training_args.lora_bias)
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(model.named_parameters())
if training_args.local_rank == 0 or training_args.local_rank == -1:
model.config.save_pretrained(training_args.output_dir)
model.save_pretrained(training_args.output_dir, state_dict=state_dict)
torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin'))
else:
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)
if __name__ == "__main__":
train(attn_implementation="flash_attention_2")