Spaces:
Running
on
Zero
Running
on
Zero
feat: Enable MCP
Browse filesHello! This is an automated PR adding MCP compatibility to your AI App 🤖.
This PR introduces two improvements:
1. Adds docstrings to the functions in the app file that are directly connected to the Gradio UI, for the downstream LLM to use.
2. Enables the Model-Compute-Platform by adding `mcp_server=True` to the `.launch()` call.
No other logic has been changed. Please review and merge if it looks good!Learn more about MCP compatibility in Spaces here: https://huggingface.co/changelog/add-compatible-spaces-to-your-mcp-tools
app.py
CHANGED
@@ -51,6 +51,17 @@ def add_contour(img, mask, color=(1., 1., 1.)):
|
|
51 |
|
52 |
@spaces.GPU(duration=120)
|
53 |
def generate_masks(image, mask_list, mask_raw_list):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
image['image'] = image['background'].convert('RGB')
|
55 |
# del image['background'], image['composite']
|
56 |
assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"
|
@@ -77,6 +88,17 @@ def generate_masks(image, mask_list, mask_raw_list):
|
|
77 |
|
78 |
@spaces.GPU(duration=120)
|
79 |
def generate_masks_video(image, mask_list_video, mask_raw_list_video):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
image['image'] = image['background'].convert('RGB')
|
81 |
# del image['background'], image['composite']
|
82 |
assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"
|
@@ -104,6 +126,18 @@ def generate_masks_video(image, mask_list_video, mask_raw_list_video):
|
|
104 |
|
105 |
@spaces.GPU(duration=120)
|
106 |
def describe(image, mode, query, masks):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
# Create an image object from the uploaded image
|
108 |
# print(image.keys())
|
109 |
|
@@ -194,6 +228,15 @@ def describe(image, mode, query, masks):
|
|
194 |
|
195 |
|
196 |
def load_first_frame(video_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
cap = cv2.VideoCapture(video_path)
|
198 |
ret, frame = cap.read()
|
199 |
cap.release()
|
@@ -205,6 +248,20 @@ def load_first_frame(video_path):
|
|
205 |
|
206 |
@spaces.GPU(duration=120)
|
207 |
def describe_video(video_path, mode, query, annotated_frame, masks, mask_list_video):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
# Create a temporary directory to save extracted video frames
|
209 |
cap = cv2.VideoCapture(video_path)
|
210 |
|
@@ -294,247 +351,4 @@ def describe_video(video_path, mode, query, annotated_frame, masks, mask_list_vi
|
|
294 |
mask_image = Image.fromarray((mask_np[:,:,np.newaxis] * np.array(annotated_frame['image'])).astype(np.uint8))
|
295 |
mask_list_video.append((mask_image, f"<object{len(mask_list_video)}>"))
|
296 |
text = ""
|
297 |
-
yield frame_img, text, mask_list_video, mask_list_video
|
298 |
-
|
299 |
-
for token in get_model_output(
|
300 |
-
video_tensor,
|
301 |
-
query,
|
302 |
-
model=model,
|
303 |
-
tokenizer=tokenizer,
|
304 |
-
masks=masks,
|
305 |
-
mask_ids=mask_ids,
|
306 |
-
modal='video',
|
307 |
-
streaming=True,
|
308 |
-
):
|
309 |
-
text += token
|
310 |
-
yield gr.update(), text, gr.update(), gr.update()
|
311 |
-
|
312 |
-
|
313 |
-
@spaces.GPU(duration=120)
|
314 |
-
def apply_sam(image, input_points):
|
315 |
-
inputs = sam_processor(image, input_points=input_points, return_tensors="pt").to(device)
|
316 |
-
|
317 |
-
with torch.no_grad():
|
318 |
-
outputs = sam_model(**inputs)
|
319 |
-
|
320 |
-
masks = sam_processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu())[0][0]
|
321 |
-
scores = outputs.iou_scores[0, 0]
|
322 |
-
|
323 |
-
mask_selection_index = scores.argmax()
|
324 |
-
|
325 |
-
mask_np = masks[mask_selection_index].numpy()
|
326 |
-
|
327 |
-
return mask_np
|
328 |
-
|
329 |
-
|
330 |
-
def clear_masks():
|
331 |
-
return [], [], []
|
332 |
-
|
333 |
-
|
334 |
-
if __name__ == "__main__":
|
335 |
-
parser = argparse.ArgumentParser(description="VideoRefer gradio demo")
|
336 |
-
parser.add_argument("--model-path", type=str, default="DAMO-NLP-SG/VideoRefer-VideoLLaMA3-7B", help="Path to the model checkpoint")
|
337 |
-
parser.add_argument("--prompt-mode", type=str, default="focal_prompt", help="Prompt mode")
|
338 |
-
parser.add_argument("--conv-mode", type=str, default="v1", help="Conversation mode")
|
339 |
-
parser.add_argument("--temperature", type=float, default=0.2, help="Sampling temperature")
|
340 |
-
parser.add_argument("--top_p", type=float, default=0.5, help="Top-p for sampling")
|
341 |
-
|
342 |
-
args_cli = parser.parse_args()
|
343 |
-
|
344 |
-
with gr.Blocks(theme=gr.themes.Soft(primary_hue="amber")) as demo:
|
345 |
-
|
346 |
-
mask_list = gr.State([])
|
347 |
-
mask_raw_list = gr.State([])
|
348 |
-
mask_list_video = gr.State([])
|
349 |
-
mask_raw_list_video = gr.State([])
|
350 |
-
|
351 |
-
|
352 |
-
HEADER = ("""
|
353 |
-
<div>
|
354 |
-
<h1>VideoRefer X VideoLLaMA3 Demo</h1>
|
355 |
-
<h5 style="margin: 0;">Feel free to click on anything that grabs your interest!</h5>
|
356 |
-
<h5 style="margin: 0;">If this demo please you, please give us a star ⭐ on Github or 💖 on this space.</h5>
|
357 |
-
</div>
|
358 |
-
</div>
|
359 |
-
<div style="display: flex; justify-content: left; margin-top: 10px;">
|
360 |
-
<a href="https://arxiv.org/pdf/2501.00599"><img src="https://img.shields.io/badge/Arxiv-2501.00599-ECA8A7" style="margin-right: 5px;"></a>
|
361 |
-
<a href="https://github.com/DAMO-NLP-SG/VideoRefer"><img src='https://img.shields.io/badge/Github-VideoRefer-F7C97E' style="margin-right: 5px;"></a>
|
362 |
-
<a href="https://github.com/DAMO-NLP-SG/VideoLLaMA3"><img src='https://img.shields.io/badge/Github-VideoLLaMA3-9DC3E6' style="margin-right: 5px;"></a>
|
363 |
-
</div>
|
364 |
-
""")
|
365 |
-
|
366 |
-
with gr.Row():
|
367 |
-
with gr.Column():
|
368 |
-
gr.HTML(HEADER)
|
369 |
-
|
370 |
-
|
371 |
-
image_tips = """
|
372 |
-
### 💡 Tips:
|
373 |
-
|
374 |
-
🧸 Upload an image, and you can use the drawing tool✍️ to highlight the areas you're interested in.
|
375 |
-
|
376 |
-
🔖 For single-object caption mode, simply select the area and click the 'Generate Caption' button to receive a caption for the object.
|
377 |
-
|
378 |
-
🔔 In QA mode, you can generate multiple masks by clicking the 'Generate Mask' button multiple times. Afterward, use the corresponding object id to ask questions.
|
379 |
-
|
380 |
-
📌 Click the button 'Clear Masks' to clear the current generated masks.
|
381 |
-
|
382 |
-
"""
|
383 |
-
|
384 |
-
video_tips = """
|
385 |
-
### 💡 Tips:
|
386 |
-
⚠️ For video mode, we only support masking on the first frame in this demo.
|
387 |
-
|
388 |
-
🧸 Upload an video, and you can use the drawing tool✍️ to highlight the areas you're interested in the first frame.
|
389 |
-
|
390 |
-
🔖 For single-object caption mode, simply select the area and click the 'Generate Caption' button to receive a caption for the object.
|
391 |
-
|
392 |
-
🔔 In QA mode, you can generate multiple masks by clicking the 'Generate Mask' button multiple times. Afterward, use the corresponding object id to ask questions.
|
393 |
-
|
394 |
-
📌 Click the button 'Clear Masks' to clear the current generated masks.
|
395 |
-
|
396 |
-
"""
|
397 |
-
|
398 |
-
|
399 |
-
with gr.TabItem("Image"):
|
400 |
-
with gr.Row():
|
401 |
-
with gr.Column():
|
402 |
-
image_input = gr.ImageEditor(
|
403 |
-
label="Image",
|
404 |
-
type="pil",
|
405 |
-
sources=['upload'],
|
406 |
-
brush=gr.Brush(colors=["#ED7D31"], color_mode="fixed", default_size=10),
|
407 |
-
eraser=True,
|
408 |
-
layers=False,
|
409 |
-
transforms=[],
|
410 |
-
height=300,
|
411 |
-
)
|
412 |
-
generate_mask_btn = gr.Button("1️⃣ Generate Mask", visible=False, variant="primary")
|
413 |
-
mode = gr.Radio(label="Mode", choices=["Caption", "QA"], value="Caption")
|
414 |
-
query = gr.Textbox(label="Question", value="What is the relationship between <region0> and <region1>?", interactive=True, visible=False)
|
415 |
-
|
416 |
-
submit_btn = gr.Button("Generate Caption", variant="primary")
|
417 |
-
submit_btn1 = gr.Button("2️⃣ Generate Answer", variant="primary", visible=False)
|
418 |
-
gr.Examples([f"./demo/images/{i+1}.jpg" for i in range(8)], inputs=image_input, label="Examples")
|
419 |
-
|
420 |
-
with gr.Column():
|
421 |
-
mask_output = gr.Gallery(label="Referred Masks", object_fit='scale-down', visible=False)
|
422 |
-
output_image = gr.Image(label="Image with Mask", visible=True, height=400)
|
423 |
-
description = gr.Textbox(label="Output", visible=True)
|
424 |
-
|
425 |
-
clear_masks_btn = gr.Button("Clear Masks", variant="secondary", visible=False)
|
426 |
-
gr.Markdown(image_tips)
|
427 |
-
|
428 |
-
with gr.TabItem("Video"):
|
429 |
-
with gr.Row():
|
430 |
-
with gr.Column():
|
431 |
-
video_input = gr.Video(label="Video")
|
432 |
-
# load_btn = gr.Button("🖼️ Load First Frame", variant="secondary")
|
433 |
-
first_frame = gr.ImageEditor(
|
434 |
-
label="Annotate First Frame",
|
435 |
-
type="pil",
|
436 |
-
sources=['upload'],
|
437 |
-
brush=gr.Brush(colors=["#ED7D31"], color_mode="fixed", default_size=10),
|
438 |
-
eraser=True,
|
439 |
-
layers=False,
|
440 |
-
transforms=[],
|
441 |
-
height=300,
|
442 |
-
)
|
443 |
-
generate_mask_btn_video = gr.Button("1️⃣ Generate Mask", visible=False, variant="primary")
|
444 |
-
gr.Examples([f"./demo/videos/{i+1}.mp4" for i in range(4)], inputs=video_input, label="Examples")
|
445 |
-
|
446 |
-
with gr.Column():
|
447 |
-
mode_video = gr.Radio(label="Mode", choices=["Caption", "QA"], value="Caption")
|
448 |
-
mask_output_video = gr.Gallery(label="Referred Masks", object_fit='scale-down')
|
449 |
-
|
450 |
-
query_video = gr.Textbox(label="Question", value="What is the relationship between <object0> and <object1>?", interactive=True, visible=False)
|
451 |
-
|
452 |
-
submit_btn_video = gr.Button("Generate Caption", variant="primary")
|
453 |
-
submit_btn_video1 = gr.Button("2️⃣ Generate Answer", variant="primary", visible=False)
|
454 |
-
description_video = gr.Textbox(label="Output", visible=True)
|
455 |
-
|
456 |
-
clear_masks_btn_video = gr.Button("Clear Masks", variant="secondary")
|
457 |
-
|
458 |
-
gr.Markdown(video_tips)
|
459 |
-
|
460 |
-
|
461 |
-
def toggle_query_and_generate_button(mode):
|
462 |
-
query_visible = mode == "QA"
|
463 |
-
caption_visible = mode == "Caption"
|
464 |
-
return gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=caption_visible), gr.update(visible=caption_visible), [], "", [], [],[],[]
|
465 |
-
|
466 |
-
video_input.change(load_first_frame, inputs=video_input, outputs=first_frame)
|
467 |
-
|
468 |
-
mode.change(toggle_query_and_generate_button, inputs=mode, outputs=[query, generate_mask_btn, clear_masks_btn, submit_btn1, mask_output, output_image, submit_btn, mask_output, description, mask_list, mask_raw_list, mask_list_video, mask_raw_list_video])
|
469 |
-
|
470 |
-
def toggle_query_and_generate_button_video(mode):
|
471 |
-
query_visible = mode == "QA"
|
472 |
-
caption_visible = mode == "Caption"
|
473 |
-
return gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=caption_visible), [], [], [], [], []
|
474 |
-
|
475 |
-
|
476 |
-
mode_video.change(toggle_query_and_generate_button_video, inputs=mode_video, outputs=[query_video, generate_mask_btn_video, submit_btn_video1, submit_btn_video, mask_output_video, mask_list, mask_raw_list, mask_list_video, mask_raw_list_video])
|
477 |
-
|
478 |
-
submit_btn.click(
|
479 |
-
fn=describe,
|
480 |
-
inputs=[image_input, mode, query, mask_raw_list],
|
481 |
-
outputs=[output_image, description, image_input],
|
482 |
-
api_name="describe"
|
483 |
-
)
|
484 |
-
|
485 |
-
submit_btn1.click(
|
486 |
-
fn=describe,
|
487 |
-
inputs=[image_input, mode, query, mask_raw_list],
|
488 |
-
outputs=[output_image, description, image_input],
|
489 |
-
api_name="describe"
|
490 |
-
)
|
491 |
-
|
492 |
-
generate_mask_btn.click(
|
493 |
-
fn=generate_masks,
|
494 |
-
inputs=[image_input, mask_list, mask_raw_list],
|
495 |
-
outputs=[mask_output, image_input, mask_list, mask_raw_list]
|
496 |
-
)
|
497 |
-
|
498 |
-
generate_mask_btn_video.click(
|
499 |
-
fn=generate_masks_video,
|
500 |
-
inputs=[first_frame, mask_list_video, mask_raw_list_video],
|
501 |
-
outputs=[mask_output_video, first_frame, mask_list_video, mask_raw_list_video]
|
502 |
-
)
|
503 |
-
|
504 |
-
clear_masks_btn.click(
|
505 |
-
fn=clear_masks,
|
506 |
-
outputs=[mask_output, mask_list, mask_raw_list]
|
507 |
-
)
|
508 |
-
|
509 |
-
clear_masks_btn_video.click(
|
510 |
-
fn=clear_masks,
|
511 |
-
outputs=[mask_output_video, mask_list_video, mask_raw_list_video]
|
512 |
-
)
|
513 |
-
|
514 |
-
submit_btn_video.click(
|
515 |
-
fn=describe_video,
|
516 |
-
inputs=[video_input, mode_video, query_video, first_frame, mask_raw_list_video, mask_list_video],
|
517 |
-
outputs=[first_frame, description_video, mask_output_video, mask_list_video],
|
518 |
-
api_name="describe_video"
|
519 |
-
)
|
520 |
-
|
521 |
-
submit_btn_video1.click(
|
522 |
-
fn=describe_video,
|
523 |
-
inputs=[video_input, mode_video, query_video, first_frame, mask_raw_list_video, mask_list_video],
|
524 |
-
outputs=[first_frame, description_video, mask_output_video, mask_list_video],
|
525 |
-
api_name="describe_video"
|
526 |
-
)
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
531 |
-
sam_model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
|
532 |
-
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
|
533 |
-
|
534 |
-
disable_torch_init()
|
535 |
-
|
536 |
-
|
537 |
-
model, processor, tokenizer = model_init(args_cli.model_path)
|
538 |
-
|
539 |
-
|
540 |
-
demo.launch()
|
|
|
51 |
|
52 |
@spaces.GPU(duration=120)
|
53 |
def generate_masks(image, mask_list, mask_raw_list):
|
54 |
+
"""
|
55 |
+
Generate masks from user-drawn annotations on an image.
|
56 |
+
|
57 |
+
Args:
|
58 |
+
image: Dictionary containing the image editor state with background and layers
|
59 |
+
mask_list: List of generated mask images with labels
|
60 |
+
mask_raw_list: List of raw numpy arrays of masks
|
61 |
+
|
62 |
+
Returns:
|
63 |
+
Tuple containing updated mask_list, image editor state, mask_list, and mask_raw_list
|
64 |
+
"""
|
65 |
image['image'] = image['background'].convert('RGB')
|
66 |
# del image['background'], image['composite']
|
67 |
assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"
|
|
|
88 |
|
89 |
@spaces.GPU(duration=120)
|
90 |
def generate_masks_video(image, mask_list_video, mask_raw_list_video):
|
91 |
+
"""
|
92 |
+
Generate masks from user-drawn annotations on a video frame.
|
93 |
+
|
94 |
+
Args:
|
95 |
+
image: Dictionary containing the image editor state with background and layers
|
96 |
+
mask_list_video: List of generated mask images with labels for video
|
97 |
+
mask_raw_list_video: List of raw numpy arrays of masks for video
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
Tuple containing updated mask_list_video, image editor state, mask_list_video, and mask_raw_list_video
|
101 |
+
"""
|
102 |
image['image'] = image['background'].convert('RGB')
|
103 |
# del image['background'], image['composite']
|
104 |
assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"
|
|
|
126 |
|
127 |
@spaces.GPU(duration=120)
|
128 |
def describe(image, mode, query, masks):
|
129 |
+
"""
|
130 |
+
Generate descriptions or answer questions about regions in an image.
|
131 |
+
|
132 |
+
Args:
|
133 |
+
image: Dictionary containing the image editor state
|
134 |
+
mode: Either "Caption" or "QA" mode
|
135 |
+
query: Question to ask about the image (used in QA mode)
|
136 |
+
masks: List of mask arrays for the regions
|
137 |
+
|
138 |
+
Returns:
|
139 |
+
Generator yielding image with contours, generated text, and updated image state
|
140 |
+
"""
|
141 |
# Create an image object from the uploaded image
|
142 |
# print(image.keys())
|
143 |
|
|
|
228 |
|
229 |
|
230 |
def load_first_frame(video_path):
|
231 |
+
"""
|
232 |
+
Load and return the first frame of a video.
|
233 |
+
|
234 |
+
Args:
|
235 |
+
video_path: Path to the video file
|
236 |
+
|
237 |
+
Returns:
|
238 |
+
PIL Image of the first frame
|
239 |
+
"""
|
240 |
cap = cv2.VideoCapture(video_path)
|
241 |
ret, frame = cap.read()
|
242 |
cap.release()
|
|
|
248 |
|
249 |
@spaces.GPU(duration=120)
|
250 |
def describe_video(video_path, mode, query, annotated_frame, masks, mask_list_video):
|
251 |
+
"""
|
252 |
+
Generate descriptions or answer questions about regions in a video.
|
253 |
+
|
254 |
+
Args:
|
255 |
+
video_path: Path to the video file
|
256 |
+
mode: Either "Caption" or "QA" mode
|
257 |
+
query: Question to ask about the video (used in QA mode)
|
258 |
+
annotated_frame: Dictionary containing the annotated first frame
|
259 |
+
masks: List of mask arrays for the regions
|
260 |
+
mask_list_video: List of mask images with labels
|
261 |
+
|
262 |
+
Returns:
|
263 |
+
Generator yielding frame image, generated text, and updated mask lists
|
264 |
+
"""
|
265 |
# Create a temporary directory to save extracted video frames
|
266 |
cap = cv2.VideoCapture(video_path)
|
267 |
|
|
|
351 |
mask_image = Image.fromarray((mask_np[:,:,np.newaxis] * np.array(annotated_frame['image'])).astype(np.uint8))
|
352 |
mask_list_video.append((mask_image, f"<object{len(mask_list_video)}>"))
|
353 |
text = ""
|
354 |
+
yield frame_img, text, mask_list_video, mask_list_video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|