Spaces:
Running
on
Zero
Running
on
Zero
feat: Enable MCP
Browse filesHello! This is an automated PR adding MCP compatibility to your AI App 🤖.
This PR introduces two improvements:
1. Adds docstrings to the functions in the app file that are directly connected to the Gradio UI, for the downstream LLM to use.
2. Enables the Model-Compute-Platform by adding `mcp_server=True` to the `.launch()` call.
No other logic has been changed. Please review and merge if it looks good!Learn more about MCP compatibility in Spaces here: https://huggingface.co/changelog/add-compatible-spaces-to-your-mcp-tools
app.py
CHANGED
|
@@ -51,6 +51,17 @@ def add_contour(img, mask, color=(1., 1., 1.)):
|
|
| 51 |
|
| 52 |
@spaces.GPU(duration=120)
|
| 53 |
def generate_masks(image, mask_list, mask_raw_list):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
image['image'] = image['background'].convert('RGB')
|
| 55 |
# del image['background'], image['composite']
|
| 56 |
assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"
|
|
@@ -77,6 +88,17 @@ def generate_masks(image, mask_list, mask_raw_list):
|
|
| 77 |
|
| 78 |
@spaces.GPU(duration=120)
|
| 79 |
def generate_masks_video(image, mask_list_video, mask_raw_list_video):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
image['image'] = image['background'].convert('RGB')
|
| 81 |
# del image['background'], image['composite']
|
| 82 |
assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"
|
|
@@ -104,6 +126,18 @@ def generate_masks_video(image, mask_list_video, mask_raw_list_video):
|
|
| 104 |
|
| 105 |
@spaces.GPU(duration=120)
|
| 106 |
def describe(image, mode, query, masks):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
# Create an image object from the uploaded image
|
| 108 |
# print(image.keys())
|
| 109 |
|
|
@@ -194,6 +228,15 @@ def describe(image, mode, query, masks):
|
|
| 194 |
|
| 195 |
|
| 196 |
def load_first_frame(video_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
cap = cv2.VideoCapture(video_path)
|
| 198 |
ret, frame = cap.read()
|
| 199 |
cap.release()
|
|
@@ -205,6 +248,20 @@ def load_first_frame(video_path):
|
|
| 205 |
|
| 206 |
@spaces.GPU(duration=120)
|
| 207 |
def describe_video(video_path, mode, query, annotated_frame, masks, mask_list_video):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
# Create a temporary directory to save extracted video frames
|
| 209 |
cap = cv2.VideoCapture(video_path)
|
| 210 |
|
|
@@ -294,247 +351,4 @@ def describe_video(video_path, mode, query, annotated_frame, masks, mask_list_vi
|
|
| 294 |
mask_image = Image.fromarray((mask_np[:,:,np.newaxis] * np.array(annotated_frame['image'])).astype(np.uint8))
|
| 295 |
mask_list_video.append((mask_image, f"<object{len(mask_list_video)}>"))
|
| 296 |
text = ""
|
| 297 |
-
yield frame_img, text, mask_list_video, mask_list_video
|
| 298 |
-
|
| 299 |
-
for token in get_model_output(
|
| 300 |
-
video_tensor,
|
| 301 |
-
query,
|
| 302 |
-
model=model,
|
| 303 |
-
tokenizer=tokenizer,
|
| 304 |
-
masks=masks,
|
| 305 |
-
mask_ids=mask_ids,
|
| 306 |
-
modal='video',
|
| 307 |
-
streaming=True,
|
| 308 |
-
):
|
| 309 |
-
text += token
|
| 310 |
-
yield gr.update(), text, gr.update(), gr.update()
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
@spaces.GPU(duration=120)
|
| 314 |
-
def apply_sam(image, input_points):
|
| 315 |
-
inputs = sam_processor(image, input_points=input_points, return_tensors="pt").to(device)
|
| 316 |
-
|
| 317 |
-
with torch.no_grad():
|
| 318 |
-
outputs = sam_model(**inputs)
|
| 319 |
-
|
| 320 |
-
masks = sam_processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu())[0][0]
|
| 321 |
-
scores = outputs.iou_scores[0, 0]
|
| 322 |
-
|
| 323 |
-
mask_selection_index = scores.argmax()
|
| 324 |
-
|
| 325 |
-
mask_np = masks[mask_selection_index].numpy()
|
| 326 |
-
|
| 327 |
-
return mask_np
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
def clear_masks():
|
| 331 |
-
return [], [], []
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
if __name__ == "__main__":
|
| 335 |
-
parser = argparse.ArgumentParser(description="VideoRefer gradio demo")
|
| 336 |
-
parser.add_argument("--model-path", type=str, default="DAMO-NLP-SG/VideoRefer-VideoLLaMA3-7B", help="Path to the model checkpoint")
|
| 337 |
-
parser.add_argument("--prompt-mode", type=str, default="focal_prompt", help="Prompt mode")
|
| 338 |
-
parser.add_argument("--conv-mode", type=str, default="v1", help="Conversation mode")
|
| 339 |
-
parser.add_argument("--temperature", type=float, default=0.2, help="Sampling temperature")
|
| 340 |
-
parser.add_argument("--top_p", type=float, default=0.5, help="Top-p for sampling")
|
| 341 |
-
|
| 342 |
-
args_cli = parser.parse_args()
|
| 343 |
-
|
| 344 |
-
with gr.Blocks(theme=gr.themes.Soft(primary_hue="amber")) as demo:
|
| 345 |
-
|
| 346 |
-
mask_list = gr.State([])
|
| 347 |
-
mask_raw_list = gr.State([])
|
| 348 |
-
mask_list_video = gr.State([])
|
| 349 |
-
mask_raw_list_video = gr.State([])
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
HEADER = ("""
|
| 353 |
-
<div>
|
| 354 |
-
<h1>VideoRefer X VideoLLaMA3 Demo</h1>
|
| 355 |
-
<h5 style="margin: 0;">Feel free to click on anything that grabs your interest!</h5>
|
| 356 |
-
<h5 style="margin: 0;">If this demo please you, please give us a star ⭐ on Github or 💖 on this space.</h5>
|
| 357 |
-
</div>
|
| 358 |
-
</div>
|
| 359 |
-
<div style="display: flex; justify-content: left; margin-top: 10px;">
|
| 360 |
-
<a href="https://arxiv.org/pdf/2501.00599"><img src="https://img.shields.io/badge/Arxiv-2501.00599-ECA8A7" style="margin-right: 5px;"></a>
|
| 361 |
-
<a href="https://github.com/DAMO-NLP-SG/VideoRefer"><img src='https://img.shields.io/badge/Github-VideoRefer-F7C97E' style="margin-right: 5px;"></a>
|
| 362 |
-
<a href="https://github.com/DAMO-NLP-SG/VideoLLaMA3"><img src='https://img.shields.io/badge/Github-VideoLLaMA3-9DC3E6' style="margin-right: 5px;"></a>
|
| 363 |
-
</div>
|
| 364 |
-
""")
|
| 365 |
-
|
| 366 |
-
with gr.Row():
|
| 367 |
-
with gr.Column():
|
| 368 |
-
gr.HTML(HEADER)
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
image_tips = """
|
| 372 |
-
### 💡 Tips:
|
| 373 |
-
|
| 374 |
-
🧸 Upload an image, and you can use the drawing tool✍️ to highlight the areas you're interested in.
|
| 375 |
-
|
| 376 |
-
🔖 For single-object caption mode, simply select the area and click the 'Generate Caption' button to receive a caption for the object.
|
| 377 |
-
|
| 378 |
-
🔔 In QA mode, you can generate multiple masks by clicking the 'Generate Mask' button multiple times. Afterward, use the corresponding object id to ask questions.
|
| 379 |
-
|
| 380 |
-
📌 Click the button 'Clear Masks' to clear the current generated masks.
|
| 381 |
-
|
| 382 |
-
"""
|
| 383 |
-
|
| 384 |
-
video_tips = """
|
| 385 |
-
### 💡 Tips:
|
| 386 |
-
⚠️ For video mode, we only support masking on the first frame in this demo.
|
| 387 |
-
|
| 388 |
-
🧸 Upload an video, and you can use the drawing tool✍️ to highlight the areas you're interested in the first frame.
|
| 389 |
-
|
| 390 |
-
🔖 For single-object caption mode, simply select the area and click the 'Generate Caption' button to receive a caption for the object.
|
| 391 |
-
|
| 392 |
-
🔔 In QA mode, you can generate multiple masks by clicking the 'Generate Mask' button multiple times. Afterward, use the corresponding object id to ask questions.
|
| 393 |
-
|
| 394 |
-
📌 Click the button 'Clear Masks' to clear the current generated masks.
|
| 395 |
-
|
| 396 |
-
"""
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
with gr.TabItem("Image"):
|
| 400 |
-
with gr.Row():
|
| 401 |
-
with gr.Column():
|
| 402 |
-
image_input = gr.ImageEditor(
|
| 403 |
-
label="Image",
|
| 404 |
-
type="pil",
|
| 405 |
-
sources=['upload'],
|
| 406 |
-
brush=gr.Brush(colors=["#ED7D31"], color_mode="fixed", default_size=10),
|
| 407 |
-
eraser=True,
|
| 408 |
-
layers=False,
|
| 409 |
-
transforms=[],
|
| 410 |
-
height=300,
|
| 411 |
-
)
|
| 412 |
-
generate_mask_btn = gr.Button("1️⃣ Generate Mask", visible=False, variant="primary")
|
| 413 |
-
mode = gr.Radio(label="Mode", choices=["Caption", "QA"], value="Caption")
|
| 414 |
-
query = gr.Textbox(label="Question", value="What is the relationship between <region0> and <region1>?", interactive=True, visible=False)
|
| 415 |
-
|
| 416 |
-
submit_btn = gr.Button("Generate Caption", variant="primary")
|
| 417 |
-
submit_btn1 = gr.Button("2️⃣ Generate Answer", variant="primary", visible=False)
|
| 418 |
-
gr.Examples([f"./demo/images/{i+1}.jpg" for i in range(8)], inputs=image_input, label="Examples")
|
| 419 |
-
|
| 420 |
-
with gr.Column():
|
| 421 |
-
mask_output = gr.Gallery(label="Referred Masks", object_fit='scale-down', visible=False)
|
| 422 |
-
output_image = gr.Image(label="Image with Mask", visible=True, height=400)
|
| 423 |
-
description = gr.Textbox(label="Output", visible=True)
|
| 424 |
-
|
| 425 |
-
clear_masks_btn = gr.Button("Clear Masks", variant="secondary", visible=False)
|
| 426 |
-
gr.Markdown(image_tips)
|
| 427 |
-
|
| 428 |
-
with gr.TabItem("Video"):
|
| 429 |
-
with gr.Row():
|
| 430 |
-
with gr.Column():
|
| 431 |
-
video_input = gr.Video(label="Video")
|
| 432 |
-
# load_btn = gr.Button("🖼️ Load First Frame", variant="secondary")
|
| 433 |
-
first_frame = gr.ImageEditor(
|
| 434 |
-
label="Annotate First Frame",
|
| 435 |
-
type="pil",
|
| 436 |
-
sources=['upload'],
|
| 437 |
-
brush=gr.Brush(colors=["#ED7D31"], color_mode="fixed", default_size=10),
|
| 438 |
-
eraser=True,
|
| 439 |
-
layers=False,
|
| 440 |
-
transforms=[],
|
| 441 |
-
height=300,
|
| 442 |
-
)
|
| 443 |
-
generate_mask_btn_video = gr.Button("1️⃣ Generate Mask", visible=False, variant="primary")
|
| 444 |
-
gr.Examples([f"./demo/videos/{i+1}.mp4" for i in range(4)], inputs=video_input, label="Examples")
|
| 445 |
-
|
| 446 |
-
with gr.Column():
|
| 447 |
-
mode_video = gr.Radio(label="Mode", choices=["Caption", "QA"], value="Caption")
|
| 448 |
-
mask_output_video = gr.Gallery(label="Referred Masks", object_fit='scale-down')
|
| 449 |
-
|
| 450 |
-
query_video = gr.Textbox(label="Question", value="What is the relationship between <object0> and <object1>?", interactive=True, visible=False)
|
| 451 |
-
|
| 452 |
-
submit_btn_video = gr.Button("Generate Caption", variant="primary")
|
| 453 |
-
submit_btn_video1 = gr.Button("2️⃣ Generate Answer", variant="primary", visible=False)
|
| 454 |
-
description_video = gr.Textbox(label="Output", visible=True)
|
| 455 |
-
|
| 456 |
-
clear_masks_btn_video = gr.Button("Clear Masks", variant="secondary")
|
| 457 |
-
|
| 458 |
-
gr.Markdown(video_tips)
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
def toggle_query_and_generate_button(mode):
|
| 462 |
-
query_visible = mode == "QA"
|
| 463 |
-
caption_visible = mode == "Caption"
|
| 464 |
-
return gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=caption_visible), gr.update(visible=caption_visible), [], "", [], [],[],[]
|
| 465 |
-
|
| 466 |
-
video_input.change(load_first_frame, inputs=video_input, outputs=first_frame)
|
| 467 |
-
|
| 468 |
-
mode.change(toggle_query_and_generate_button, inputs=mode, outputs=[query, generate_mask_btn, clear_masks_btn, submit_btn1, mask_output, output_image, submit_btn, mask_output, description, mask_list, mask_raw_list, mask_list_video, mask_raw_list_video])
|
| 469 |
-
|
| 470 |
-
def toggle_query_and_generate_button_video(mode):
|
| 471 |
-
query_visible = mode == "QA"
|
| 472 |
-
caption_visible = mode == "Caption"
|
| 473 |
-
return gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=caption_visible), [], [], [], [], []
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
mode_video.change(toggle_query_and_generate_button_video, inputs=mode_video, outputs=[query_video, generate_mask_btn_video, submit_btn_video1, submit_btn_video, mask_output_video, mask_list, mask_raw_list, mask_list_video, mask_raw_list_video])
|
| 477 |
-
|
| 478 |
-
submit_btn.click(
|
| 479 |
-
fn=describe,
|
| 480 |
-
inputs=[image_input, mode, query, mask_raw_list],
|
| 481 |
-
outputs=[output_image, description, image_input],
|
| 482 |
-
api_name="describe"
|
| 483 |
-
)
|
| 484 |
-
|
| 485 |
-
submit_btn1.click(
|
| 486 |
-
fn=describe,
|
| 487 |
-
inputs=[image_input, mode, query, mask_raw_list],
|
| 488 |
-
outputs=[output_image, description, image_input],
|
| 489 |
-
api_name="describe"
|
| 490 |
-
)
|
| 491 |
-
|
| 492 |
-
generate_mask_btn.click(
|
| 493 |
-
fn=generate_masks,
|
| 494 |
-
inputs=[image_input, mask_list, mask_raw_list],
|
| 495 |
-
outputs=[mask_output, image_input, mask_list, mask_raw_list]
|
| 496 |
-
)
|
| 497 |
-
|
| 498 |
-
generate_mask_btn_video.click(
|
| 499 |
-
fn=generate_masks_video,
|
| 500 |
-
inputs=[first_frame, mask_list_video, mask_raw_list_video],
|
| 501 |
-
outputs=[mask_output_video, first_frame, mask_list_video, mask_raw_list_video]
|
| 502 |
-
)
|
| 503 |
-
|
| 504 |
-
clear_masks_btn.click(
|
| 505 |
-
fn=clear_masks,
|
| 506 |
-
outputs=[mask_output, mask_list, mask_raw_list]
|
| 507 |
-
)
|
| 508 |
-
|
| 509 |
-
clear_masks_btn_video.click(
|
| 510 |
-
fn=clear_masks,
|
| 511 |
-
outputs=[mask_output_video, mask_list_video, mask_raw_list_video]
|
| 512 |
-
)
|
| 513 |
-
|
| 514 |
-
submit_btn_video.click(
|
| 515 |
-
fn=describe_video,
|
| 516 |
-
inputs=[video_input, mode_video, query_video, first_frame, mask_raw_list_video, mask_list_video],
|
| 517 |
-
outputs=[first_frame, description_video, mask_output_video, mask_list_video],
|
| 518 |
-
api_name="describe_video"
|
| 519 |
-
)
|
| 520 |
-
|
| 521 |
-
submit_btn_video1.click(
|
| 522 |
-
fn=describe_video,
|
| 523 |
-
inputs=[video_input, mode_video, query_video, first_frame, mask_raw_list_video, mask_list_video],
|
| 524 |
-
outputs=[first_frame, description_video, mask_output_video, mask_list_video],
|
| 525 |
-
api_name="describe_video"
|
| 526 |
-
)
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 531 |
-
sam_model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
|
| 532 |
-
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
|
| 533 |
-
|
| 534 |
-
disable_torch_init()
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
model, processor, tokenizer = model_init(args_cli.model_path)
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
demo.launch()
|
|
|
|
| 51 |
|
| 52 |
@spaces.GPU(duration=120)
|
| 53 |
def generate_masks(image, mask_list, mask_raw_list):
|
| 54 |
+
"""
|
| 55 |
+
Generate masks from user-drawn annotations on an image.
|
| 56 |
+
|
| 57 |
+
Args:
|
| 58 |
+
image: Dictionary containing the image editor state with background and layers
|
| 59 |
+
mask_list: List of generated mask images with labels
|
| 60 |
+
mask_raw_list: List of raw numpy arrays of masks
|
| 61 |
+
|
| 62 |
+
Returns:
|
| 63 |
+
Tuple containing updated mask_list, image editor state, mask_list, and mask_raw_list
|
| 64 |
+
"""
|
| 65 |
image['image'] = image['background'].convert('RGB')
|
| 66 |
# del image['background'], image['composite']
|
| 67 |
assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"
|
|
|
|
| 88 |
|
| 89 |
@spaces.GPU(duration=120)
|
| 90 |
def generate_masks_video(image, mask_list_video, mask_raw_list_video):
|
| 91 |
+
"""
|
| 92 |
+
Generate masks from user-drawn annotations on a video frame.
|
| 93 |
+
|
| 94 |
+
Args:
|
| 95 |
+
image: Dictionary containing the image editor state with background and layers
|
| 96 |
+
mask_list_video: List of generated mask images with labels for video
|
| 97 |
+
mask_raw_list_video: List of raw numpy arrays of masks for video
|
| 98 |
+
|
| 99 |
+
Returns:
|
| 100 |
+
Tuple containing updated mask_list_video, image editor state, mask_list_video, and mask_raw_list_video
|
| 101 |
+
"""
|
| 102 |
image['image'] = image['background'].convert('RGB')
|
| 103 |
# del image['background'], image['composite']
|
| 104 |
assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"
|
|
|
|
| 126 |
|
| 127 |
@spaces.GPU(duration=120)
|
| 128 |
def describe(image, mode, query, masks):
|
| 129 |
+
"""
|
| 130 |
+
Generate descriptions or answer questions about regions in an image.
|
| 131 |
+
|
| 132 |
+
Args:
|
| 133 |
+
image: Dictionary containing the image editor state
|
| 134 |
+
mode: Either "Caption" or "QA" mode
|
| 135 |
+
query: Question to ask about the image (used in QA mode)
|
| 136 |
+
masks: List of mask arrays for the regions
|
| 137 |
+
|
| 138 |
+
Returns:
|
| 139 |
+
Generator yielding image with contours, generated text, and updated image state
|
| 140 |
+
"""
|
| 141 |
# Create an image object from the uploaded image
|
| 142 |
# print(image.keys())
|
| 143 |
|
|
|
|
| 228 |
|
| 229 |
|
| 230 |
def load_first_frame(video_path):
|
| 231 |
+
"""
|
| 232 |
+
Load and return the first frame of a video.
|
| 233 |
+
|
| 234 |
+
Args:
|
| 235 |
+
video_path: Path to the video file
|
| 236 |
+
|
| 237 |
+
Returns:
|
| 238 |
+
PIL Image of the first frame
|
| 239 |
+
"""
|
| 240 |
cap = cv2.VideoCapture(video_path)
|
| 241 |
ret, frame = cap.read()
|
| 242 |
cap.release()
|
|
|
|
| 248 |
|
| 249 |
@spaces.GPU(duration=120)
|
| 250 |
def describe_video(video_path, mode, query, annotated_frame, masks, mask_list_video):
|
| 251 |
+
"""
|
| 252 |
+
Generate descriptions or answer questions about regions in a video.
|
| 253 |
+
|
| 254 |
+
Args:
|
| 255 |
+
video_path: Path to the video file
|
| 256 |
+
mode: Either "Caption" or "QA" mode
|
| 257 |
+
query: Question to ask about the video (used in QA mode)
|
| 258 |
+
annotated_frame: Dictionary containing the annotated first frame
|
| 259 |
+
masks: List of mask arrays for the regions
|
| 260 |
+
mask_list_video: List of mask images with labels
|
| 261 |
+
|
| 262 |
+
Returns:
|
| 263 |
+
Generator yielding frame image, generated text, and updated mask lists
|
| 264 |
+
"""
|
| 265 |
# Create a temporary directory to save extracted video frames
|
| 266 |
cap = cv2.VideoCapture(video_path)
|
| 267 |
|
|
|
|
| 351 |
mask_image = Image.fromarray((mask_np[:,:,np.newaxis] * np.array(annotated_frame['image'])).astype(np.uint8))
|
| 352 |
mask_list_video.append((mask_image, f"<object{len(mask_list_video)}>"))
|
| 353 |
text = ""
|
| 354 |
+
yield frame_img, text, mask_list_video, mask_list_video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|