# Copyright 2024 Alibaba DAMO Academy # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import os import re import einops import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import LayerNorm, LayerNorm2d from timm.models.regnet import RegStage from transformers import TRANSFORMERS_CACHE def parse_snapshot_folder(repo_id, cache_dir=None, repo_type="model"): revision = "main" # 1. parse the downloaded cache folder if cache_dir is None: cache_dir = TRANSFORMERS_CACHE else: cache_dir = cache_dir object_id = repo_id.replace("/", "--") repo_cache = os.path.join(cache_dir, f"{repo_type}s--{object_id}") # 2. resolve refs (for instance to convert main to the associated commit sha) refs_dir = os.path.join(repo_cache, "refs") if os.path.isdir(refs_dir): revision_file = os.path.join(refs_dir, revision) if os.path.isfile(revision_file): with open(revision_file) as f: revision = f.read() # 3. acquire the snapshot folder folder = os.path.join(repo_cache, "snapshots", revision) return folder def load_mm_projector(model_path, cache_dir=None, token=None): if os.path.exists(os.path.join(model_path, 'mm_projector.bin')): is_local = True folder = model_path else: is_local = False folder = parse_snapshot_folder(model_path, cache_dir=cache_dir, repo_type="model") if not os.path.exists(os.path.join(folder, 'mm_projector.bin')): # downloading from remote repo from huggingface_hub import snapshot_download snapshot_download(repo_id=model_path, cache_dir=cache_dir, token=token) mm_projector_weights = torch.load(os.path.join(folder, 'mm_projector.bin'), map_location='cpu') mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()} return mm_projector_weights class IdentityMap(nn.Module): def __init__(self): super().__init__() def forward(self, x, *args, **kwargs): return x @property def config(self): return {"mm_projector_type": 'identity'} def build_mlp(depth, hidden_size, output_hidden_size): modules = [nn.Linear(hidden_size, output_hidden_size)] for _ in range(1, depth): modules.append(nn.GELU()) modules.append(nn.Linear(output_hidden_size, output_hidden_size)) return nn.Sequential(*modules) class SimSpatialConv(nn.Module): def __init__(self, config, downsample=(2, 2), padding=1, depth=1, mlp_depth=2): super().__init__() self.encoder_hidden_size = encoder_hidden_size = config.mm_hidden_size self.output_hidden_size = output_hidden_size = config.hidden_size self.downsample = downsample self.padding = padding self.sampler = nn.Sequential( nn.Conv2d( in_channels=self.encoder_hidden_size, out_channels=4 * self.encoder_hidden_size, kernel_size=self.downsample, stride=self.downsample, padding=self.padding, bias=True ), nn.SiLU(), ) self.readout = build_mlp(mlp_depth, 4 * self.encoder_hidden_size, self.output_hidden_size) def forward(self, x): hw = int(x.size(1) ** 0.5) x = einops.rearrange(x, "b (h w) d -> b d h w", h=hw, w=hw) x = self.sampler(x) x = einops.rearrange(x, "b d h w -> b (h w) d") x = self.readout(x) return x def cal_proj_size(self, input_size): if isinstance(input_size, int): input_size = (input_size, input_size) height = math.ceil((input_size[0] + self.padding) / self.downsample[0]) width = math.ceil((input_size[1] + self.padding) / self.downsample[1]) return height * width class MlpGeluProjector(nn.Module): def __init__(self, config, projector_type): super().__init__() mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", projector_type) mlp_depth = int(mlp_gelu_match.group(1)) self.readout = build_mlp(mlp_depth, config.mm_hidden_size, config.hidden_size) def forward(self, x): x = self.readout(x) return x def cal_proj_size(self, input_size): if isinstance(input_size, int): input_size = (input_size, input_size) height = input_size[0] width = input_size[1] return height * width def build_vision_projector(config, delay_load=False, **kwargs): # videollama3 projector only support image-wise operation now, i.e., prohibit the temporal aggregation projector_type = getattr(config, 'mm_projector_type', 'linear') if projector_type == "linear": # NOTE: for both linear and mlp2x_gelu projector type, mean pooling is adopted to aggreate video features return nn.Linear(config.mm_hidden_size, config.hidden_size) elif projector_type == "simp_spatial_conv": return SimSpatialConv(config) elif projector_type.startswith("mlp"): return MlpGeluProjector(config, projector_type) if projector_type == 'identity': return IdentityMap() raise ValueError(f'Unknown projector type: {projector_type}')