# coding=utf-8 # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Qwen2VL model configuration""" import os from typing import Union from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class DAMOVLVisionConfig(PretrainedConfig): model_type = "damovl" def __init__( self, hidden_size=768, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=12, num_channels=3, patch_size=16, hidden_act="gelu_pytorch_tanh", layer_norm_eps=1e-6, attention_dropout=0.0, spatial_merge_size=1, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.spatial_merge_size = spatial_merge_size @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs)