import os import torch import torch.nn as nn from transformers import (CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel, SiglipImageProcessor, SiglipVisionConfig, SiglipVisionModel) from .qwen2vl_encoder import (Qwen2VisionTransformerPretrainedModel, Qwen2VLImageProcessor, Qwen2VLVisionConfig) from .damovl_encoder import (DAMOVLImageProcessor, DAMOVLVisionModel) class CLIPVisionEncoder(nn.Module): def __init__(self, vision_encoder, args, delay_load=False): super().__init__() self.is_loaded = False self.vision_encoder_name = vision_encoder self.select_layer = args.mm_vision_select_layer self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') if not delay_load: self.attn_implementation = getattr(args, 'mm_attn_implementation', 'flash_attention_2') self.load_model() else: # uncertain whether flash-attention-2 is supported during inference phase. self.attn_implementation = 'sdpa' # 'eager' self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_encoder_name) def load_model(self): if self.is_loaded: print('Vision tower is already loaded, `load model` call again, skipping.') return self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_encoder_name) self.vision_encoder = CLIPVisionModel.from_pretrained(self.vision_encoder_name, attn_implementation=self.attn_implementation) self.is_loaded = True def feature_select(self, image_forward_outs): image_features = image_forward_outs.hidden_states[self.select_layer] if self.select_feature == 'patch': image_features = image_features[:, 1:] elif self.select_feature == 'cls_patch': image_features = image_features else: raise ValueError(f'Unexpected select feature: {self.select_feature}') return image_features def forward(self, images, **kwargs): images = torch.cat(images) if type(images) is list: image_features = [] for image in images: image_forward_out = self.vision_encoder(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) image_feature = self.feature_select(image_forward_out).to(image.dtype) image_features.append(image_feature) else: image_forward_outs = self.vision_encoder(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) image_features = self.feature_select(image_forward_outs).to(images.dtype) return image_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_encoder.dtype @property def device(self): return self.vision_encoder.device @property def config(self): if self.is_loaded: return self.vision_encoder.config else: return self.cfg_only @property def hidden_size(self): return self.config.hidden_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2 @property def num_patches_per_side(self): return self.config.image_size // self.config.patch_size @property def image_size(self): return self.config.image_size class SiglipVisionEncoder(nn.Module): def __init__(self, vision_encoder, args, delay_load=False): super().__init__() self.is_loaded = False self.vision_encoder_name = vision_encoder self.select_layer = args.mm_vision_select_layer self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') if not delay_load: self.attn_implementation = getattr(args, 'mm_attn_implementation', 'flash_attention_2') self.load_model() else: # uncertain whether flash-attention-2 is supported during inference phase. self.attn_implementation = 'sdpa' # 'eager' self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_encoder_name) def load_model(self): if self.is_loaded: print('Vision tower is already loaded, `load model` call again, skipping.') return self.image_processor = SiglipImageProcessor.from_pretrained(self.vision_encoder_name) self.vision_encoder = SiglipVisionModel.from_pretrained(self.vision_encoder_name, attn_implementation=self.attn_implementation) self.is_loaded = True def feature_select(self, image_forward_outs): image_features = image_forward_outs.hidden_states[self.select_layer] if self.select_feature == 'patch': image_features = image_features else: raise ValueError(f'Unexpected select feature: {self.select_feature}') return image_features def forward(self, images, **kwargs): images = torch.cat(images) if type(images) is list: image_features = [] for image in images: image_forward_out = self.vision_encoder(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) image_feature = self.feature_select(image_forward_out).to(image.dtype) image_features.append(image_feature) else: image_forward_outs = self.vision_encoder(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) image_features = self.feature_select(image_forward_outs).to(images.dtype) return image_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_encoder.dtype @property def device(self): return self.vision_encoder.device @property def config(self): if self.is_loaded: return self.vision_encoder.config else: return self.cfg_only @property def hidden_size(self): return self.config.hidden_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2 @property def num_patches_per_side(self): return self.config.image_size // self.config.patch_size @property def image_size(self): return self.config.image_size class Qwen2VLVisionEncoder(nn.Module): def __init__(self, vision_encoder, args, delay_load=False): super().__init__() self.is_loaded = False self.vision_encoder_name = vision_encoder self.select_layer = args.mm_vision_select_layer if not delay_load: self.attn_implementation = getattr(args, 'mm_attn_implementation', 'flash_attention_2') self.load_model(args) else: # uncertain whether flash-attention-2 is supported during inference phase. self.attn_implementation = 'sdpa' # 'eager' self.cfg_only = Qwen2VLVisionConfig.from_pretrained(self.vision_encoder_name) def load_model(self, args): if self.is_loaded: print('Vision tower is already loaded, `load model` call again, skipping.') return # merge_size is set to 1 by default, because STAGE1, STAGE1.5, STAGE2 are trained with merge_size=1 # for stage 3, the merge_size is set to 2 by argments. self.image_processor = Qwen2VLImageProcessor.from_pretrained(self.vision_encoder_name) self.image_processor.merge_size = args.spatial_merge_size # NOTE: The maximum number of vision tokens is 8192 by default. mm_max_length = args.mm_max_length if hasattr(args, 'mm_max_length') else 9477 // (args.spatial_merge_size**2) self.image_processor.max_pixels = mm_max_length * (args.spatial_merge_size**2 * self.image_processor.patch_size**2) self.image_processor.size["max_pixels"] = self.image_processor.max_pixels # merge_size is fixed to 1 for STAGE1, STAGE1.5, STAGE2, STAGE3 in encoder and can be modified in connector. self.cfg_only = Qwen2VLVisionConfig.from_pretrained(self.vision_encoder_name) self.cfg_only.spatial_merge_size = args.spatial_merge_size self.vision_encoder = Qwen2VisionTransformerPretrainedModel.from_pretrained( self.vision_encoder_name, config=self.cfg_only, torch_dtype=args.torch_dtype, attn_implementation=self.attn_implementation) self.is_loaded = True def forward(self, images, grid_thws, strides, **kwargs): images = [image for sub_images in images for image in sub_images] grid_thws = [grid_thw for sub_grid_thws in grid_thws for grid_thw in sub_grid_thws] strides = [stride for sub_strides in strides for stride in sub_strides] images = torch.cat(images, dim=0) grid_thws = torch.cat(grid_thws, dim=0) image_features = self.vision_encoder(images, grid_thws, strides=strides) return image_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_encoder.dtype @property def device(self): return self.vision_encoder.device @property def config(self): if self.is_loaded: return self.vision_encoder.config else: return self.cfg_only @property def hidden_size(self): return self.config.hidden_size @property def num_patches(self): return -1 @property def num_patches_per_side(self): return -1 @property def image_size(self): return 14 * self.vision_encoder.config.spatial_merge_size class DAMOVLVisionEncoder(nn.Module): def __init__(self, vision_encoder, args, delay_load=False): super().__init__() self.is_loaded = False self.vision_encoder_name = vision_encoder self.args = args if not delay_load: self.attn_implementation = getattr(args, 'mm_attn_implementation', 'flash_attention_2') self.load_model(self.args) else: # uncertain whether flash-attention-2 is supported during inference phase. self.attn_implementation = 'sdpa' # 'eager' self.cfg_only = DAMOVLVisionConfig.from_pretrained(self.vision_encoder_name) def load_model(self, args): if self.is_loaded: print('Vision tower is already loaded, `load model` call again, skipping.') return # merge_size is set to 1 by default, because STAGE1, STAGE1.5, STAGE2 are trained with merge_size=1 # for stage 3, the merge_size is set to 2 by argments. self.image_processor = DAMOVLImageProcessor.from_pretrained(self.vision_encoder_name) self.image_processor.merge_size = args.spatial_merge_size # NOTE: The maximum number of vision tokens is 8192 by default. mm_max_length = args.mm_max_length if hasattr(args, 'mm_max_length') else 9477 // (args.spatial_merge_size**2) self.image_processor.max_pixels = mm_max_length * (args.spatial_merge_size**2 * self.image_processor.patch_size**2) self.image_processor.size["max_pixels"] = self.image_processor.max_pixels # merge_size is fixed to 1 for STAGE1, STAGE1.5, STAGE2, STAGE3 in encoder and can be modified in connector. self.cfg_only = Qwen2VLVisionConfig.from_pretrained(self.vision_encoder_name) self.cfg_only.spatial_merge_size = args.spatial_merge_size self.vision_encoder = DAMOVLVisionModel.from_pretrained( self.vision_encoder_name, spatial_merge_size=args.spatial_merge_size, torch_dtype=args.torch_dtype, attn_implementation=self.attn_implementation) self.is_loaded = True def forward(self, images, grid_thws, strides, **kwargs): images = [image for sub_images in images for image in sub_images] grid_thws = [grid_thw for sub_grid_thws in grid_thws for grid_thw in sub_grid_thws] strides = [stride for sub_strides in strides for stride in sub_strides] images = torch.cat(images, dim=0) grid_thws = torch.cat(grid_thws, dim=0) image_features = self.vision_encoder(images, grid_thws, strides) return image_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_encoder.dtype @property def device(self): return self.vision_encoder.device @property def config(self): if self.is_loaded: return self.vision_encoder.config else: return self.cfg_only @property def hidden_size(self): return self.config.hidden_size @property def num_patches(self): return -1 @property def num_patches_per_side(self): return -1 @property def image_size(self): return 14 * self.vision_encoder.config.spatial_merge_size def build_vision_encoder(vision_encoder_cfg, **kwargs): vision_encoder = getattr(vision_encoder_cfg, 'mm_vision_encoder', getattr(vision_encoder_cfg, 'vision_encoder', None)) vision_encoder = DAMOVLVisionEncoder(vision_encoder, args=vision_encoder_cfg, **kwargs) return vision_encoder