# Adopted from: https://github.com/haotian-liu/LLaVA. Below is the original copyright: # Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Tuple, Union import torch import torch.nn as nn from transformers import (AutoConfig, AutoModelForCausalLM, Qwen2Config, Qwen2ForCausalLM, Qwen2Model) from transformers.generation.utils import GenerateOutput from transformers.modeling_outputs import CausalLMOutputWithPast from .videollama3_arch import Videollama3MetaForCausalLM, Videollama3MetaModel class Videollama3Qwen2Config(Qwen2Config): model_type = "videollama3_qwen2" def __init__(self, **kwargs): super().__init__(**kwargs) self.model_type = "videollama3_qwen2" class Videollama3Qwen2Model(Videollama3MetaModel, Qwen2Model): config_class = Videollama3Qwen2Config def __init__(self, config: Videollama3Qwen2Config): super(Videollama3Qwen2Model, self).__init__(config) class Videollama3Qwen2ForCausalLM(Qwen2ForCausalLM, Videollama3MetaForCausalLM): config_class = Videollama3Qwen2Config def __init__(self, config, **kwargs): super(Qwen2ForCausalLM, self).__init__(config) self.model = Videollama3Qwen2Model(config) # self.pretraining_tp = config.pretraining_tp self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_model(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, cache_position: Optional[int] = None, masks: Optional[List[torch.LongTensor]] = None, additional_images = None, **kwargs ) -> Union[Tuple, CausalLMOutputWithPast]: if inputs_embeds is None: ( input_ids, attention_mask, past_key_values, inputs_embeds, labels, position_ids ) = self.prepare_inputs_labels_for_multimodal( input_ids, attention_mask, past_key_values, labels, images, position_ids, masks, additional_images ) return super().forward( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, images: Optional[torch.Tensor] = None, **kwargs, ) -> Union[GenerateOutput, torch.LongTensor]: position_ids = kwargs.pop("position_ids", None) attention_mask = kwargs.pop("attention_mask", None) additional_images = kwargs.pop("additional_images", None) masks = kwargs.pop("masks", None) if "inputs_embeds" in kwargs: raise NotImplementedError("`inputs_embeds` is not supported") if images is not None: ( input_ids, attention_mask, past_key_values, inputs_embeds, _, position_ids ) = self.prepare_inputs_labels_for_multimodal( input_ids=inputs, attention_mask=attention_mask, past_key_values=None, labels=None, images=images, position_ids=position_ids, additional_images=additional_images, masks=masks, ) else: inputs_embeds = self.get_model().embed_tokens(inputs) return super().generate( position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): images = kwargs.pop("images", None) _inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs ) if images is not None: _inputs['images'] = images return _inputs AutoConfig.register("videollama3_qwen2", Videollama3Qwen2Config) AutoModelForCausalLM.register(Videollama3Qwen2Config, Videollama3Qwen2ForCausalLM)