lol040604lol's picture
Update app.py
3af2df3 verified
import nltk
nltk.download("punkt")
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
from llama_index.llms import HuggingFaceLLM
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
import os
# Load DeepSeek-R1
deepseek_tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1", trust_remote_code=True)
deepseek_model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-R1", trust_remote_code=True)
# Load IndicBART
indicbart_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/IndicBART")
indicbart_model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/IndicBART")
# Initialize LlamaIndex components
embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2")
llm = HuggingFaceLLM(
model_name="deepseek-ai/DeepSeek-R1",
tokenizer_name="deepseek-ai/DeepSeek-R1",
max_new_tokens=512,
context_window=4096
)
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model)
# Build index from documents in 'data' directory
documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
# Define functions for each task
def restore_text(input_text, task_type):
prefix_map = {
"Restore & Correct Tamil Text": "restore: ",
"Summarize in Tamil": "summarize: ",
"Translate to English": "translate Tamil to English: "
}
prefix = prefix_map.get(task_type, "restore: ")
input_text = prefix + input_text
inputs = indicbart_tokenizer([input_text], return_tensors="pt", padding=True)
outputs = indicbart_model.generate(**inputs, max_length=256, num_beams=4, early_stopping=True)
decoded_output = indicbart_tokenizer.batch_decode(outputs, skip_special_tokens=True)
return decoded_output[0]
def deepseek_chat(message):
inputs = deepseek_tokenizer.encode(message + deepseek_tokenizer.eos_token, return_tensors="pt")
outputs = deepseek_model.generate(inputs, max_length=1024, pad_token_id=deepseek_tokenizer.eos_token_id)
return deepseek_tokenizer.decode(outputs[0], skip_special_tokens=True)
def query_documents(query):
query_engine = index.as_query_engine()
response = query_engine.query(query)
return str(response)
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("## 🕉️ Ancient Tamil Literature Expert AI")
with gr.Tab("IndicBART Tasks"):
input_text = gr.Textbox(label="Input Tamil Text", lines=8, placeholder="Enter ancient Tamil text here...")
task_type = gr.Radio(choices=["Restore & Correct Tamil Text", "Summarize in Tamil", "Translate to English"], label="Select Task")
output_text = gr.Textbox(label="Output")
submit_button = gr.Button("Submit")
submit_button.click(fn=restore_text, inputs=[input_text, task_type], outputs=output_text)
with gr.Tab("DeepSeek-R1 Chat"):
chat_input = gr.Textbox(label="Enter your message")
chat_output = gr.Textbox(label="DeepSeek-R1 Response")
chat_button = gr.Button("Send")
chat_button.click(fn=deepseek_chat, inputs=chat_input, outputs=chat_output)
with gr.Tab("Document Query"):
query_input = gr.Textbox(label="Enter your query")
query_output = gr.Textbox(label="Query Response")
query_button = gr.Button("Search")
query_button.click(fn=query_documents, inputs=query_input, outputs=query_output)
if __name__ == "__main__":
demo.launch()