import nltk nltk.download("punkt") import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext from llama_index.llms import HuggingFaceLLM from llama_index.embeddings.huggingface import HuggingFaceEmbedding import os # Load DeepSeek-R1 deepseek_tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1", trust_remote_code=True) deepseek_model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-R1", trust_remote_code=True) # Load IndicBART indicbart_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/IndicBART") indicbart_model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/IndicBART") # Initialize LlamaIndex components embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2") llm = HuggingFaceLLM( model_name="deepseek-ai/DeepSeek-R1", tokenizer_name="deepseek-ai/DeepSeek-R1", max_new_tokens=512, context_window=4096 ) service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model) # Build index from documents in 'data' directory documents = SimpleDirectoryReader("data").load_data() index = VectorStoreIndex.from_documents(documents, service_context=service_context) # Define functions for each task def restore_text(input_text, task_type): prefix_map = { "Restore & Correct Tamil Text": "restore: ", "Summarize in Tamil": "summarize: ", "Translate to English": "translate Tamil to English: " } prefix = prefix_map.get(task_type, "restore: ") input_text = prefix + input_text inputs = indicbart_tokenizer([input_text], return_tensors="pt", padding=True) outputs = indicbart_model.generate(**inputs, max_length=256, num_beams=4, early_stopping=True) decoded_output = indicbart_tokenizer.batch_decode(outputs, skip_special_tokens=True) return decoded_output[0] def deepseek_chat(message): inputs = deepseek_tokenizer.encode(message + deepseek_tokenizer.eos_token, return_tensors="pt") outputs = deepseek_model.generate(inputs, max_length=1024, pad_token_id=deepseek_tokenizer.eos_token_id) return deepseek_tokenizer.decode(outputs[0], skip_special_tokens=True) def query_documents(query): query_engine = index.as_query_engine() response = query_engine.query(query) return str(response) # Gradio Interface with gr.Blocks() as demo: gr.Markdown("## 🕉️ Ancient Tamil Literature Expert AI") with gr.Tab("IndicBART Tasks"): input_text = gr.Textbox(label="Input Tamil Text", lines=8, placeholder="Enter ancient Tamil text here...") task_type = gr.Radio(choices=["Restore & Correct Tamil Text", "Summarize in Tamil", "Translate to English"], label="Select Task") output_text = gr.Textbox(label="Output") submit_button = gr.Button("Submit") submit_button.click(fn=restore_text, inputs=[input_text, task_type], outputs=output_text) with gr.Tab("DeepSeek-R1 Chat"): chat_input = gr.Textbox(label="Enter your message") chat_output = gr.Textbox(label="DeepSeek-R1 Response") chat_button = gr.Button("Send") chat_button.click(fn=deepseek_chat, inputs=chat_input, outputs=chat_output) with gr.Tab("Document Query"): query_input = gr.Textbox(label="Enter your query") query_output = gr.Textbox(label="Query Response") query_button = gr.Button("Search") query_button.click(fn=query_documents, inputs=query_input, outputs=query_output) if __name__ == "__main__": demo.launch()