Spaces:
Sleeping
Sleeping
Commit
·
e263c34
1
Parent(s):
41ef6d8
fix23
Browse files- app.py +16 -19
- requirements.txt +0 -3
app.py
CHANGED
@@ -4,44 +4,41 @@ import time
|
|
4 |
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
5 |
import torch
|
6 |
import re
|
7 |
-
import nltk
|
8 |
-
from langdetect import detect
|
9 |
-
from pyvi.ViTokenizer import tokenize as vi_tokenize
|
10 |
-
|
11 |
-
nltk.data.path.append('/tmp/nltk_data')
|
12 |
-
nltk.download('punkt', download_dir='/tmp/nltk_data')
|
13 |
-
from nltk.tokenize import sent_tokenize
|
14 |
#fastapi
|
15 |
app = FastAPI()
|
16 |
|
17 |
-
def
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
19 |
chunks = []
|
20 |
current_chunk = []
|
21 |
current_word_count = 0
|
22 |
|
23 |
for sentence in sentences:
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
if current_word_count + sentence_word_count <= max_words:
|
28 |
current_chunk.append(sentence)
|
29 |
-
current_word_count +=
|
30 |
else:
|
31 |
-
# Nếu chunk hiện tại đạt đủ min_words, ta đóng chunk lại
|
32 |
if current_word_count >= min_words:
|
33 |
chunks.append(' '.join(current_chunk))
|
34 |
current_chunk = [sentence]
|
35 |
-
current_word_count =
|
36 |
else:
|
37 |
-
# Nếu chunk hiện tại chưa đạt min_words, nhưng không thể thêm nữa vì vượt max
|
38 |
-
# Ta vẫn đóng lại để tránh vượt giới hạn quá nhiều
|
39 |
if current_chunk:
|
40 |
chunks.append(' '.join(current_chunk))
|
41 |
current_chunk = [sentence]
|
42 |
-
current_word_count =
|
43 |
|
44 |
-
# Thêm đoạn cuối cùng nếu còn sót lại
|
45 |
if current_chunk:
|
46 |
chunks.append(' '.join(current_chunk))
|
47 |
|
|
|
4 |
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
5 |
import torch
|
6 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
#fastapi
|
8 |
app = FastAPI()
|
9 |
|
10 |
+
def simple_sentence_tokenize(text):
|
11 |
+
# Tách câu theo dấu chấm, hỏi, chấm than, theo sau là khoảng trắng hoặc xuống dòng
|
12 |
+
sentence_endings = re.compile(r'(?<=[.!?])\s+')
|
13 |
+
return sentence_endings.split(text)
|
14 |
+
|
15 |
+
def split_text_by_sentences(text, min_words=150, max_words=200, fallback_words=180):
|
16 |
+
sentences = simple_sentence_tokenize(text)
|
17 |
chunks = []
|
18 |
current_chunk = []
|
19 |
current_word_count = 0
|
20 |
|
21 |
for sentence in sentences:
|
22 |
+
sentence = sentence.strip()
|
23 |
+
if not sentence:
|
24 |
+
continue
|
25 |
+
|
26 |
+
word_count = len(sentence.split())
|
27 |
|
28 |
+
if current_word_count + word_count <= max_words:
|
|
|
29 |
current_chunk.append(sentence)
|
30 |
+
current_word_count += word_count
|
31 |
else:
|
|
|
32 |
if current_word_count >= min_words:
|
33 |
chunks.append(' '.join(current_chunk))
|
34 |
current_chunk = [sentence]
|
35 |
+
current_word_count = word_count
|
36 |
else:
|
|
|
|
|
37 |
if current_chunk:
|
38 |
chunks.append(' '.join(current_chunk))
|
39 |
current_chunk = [sentence]
|
40 |
+
current_word_count = word_count
|
41 |
|
|
|
42 |
if current_chunk:
|
43 |
chunks.append(' '.join(current_chunk))
|
44 |
|
requirements.txt
CHANGED
@@ -3,6 +3,3 @@ uvicorn
|
|
3 |
torch
|
4 |
transformers
|
5 |
sentencepiece
|
6 |
-
nltk
|
7 |
-
pyvi
|
8 |
-
langdetect
|
|
|
3 |
torch
|
4 |
transformers
|
5 |
sentencepiece
|
|
|
|
|
|