Spaces:
Sleeping
Sleeping
Commit
·
fdd52fa
1
Parent(s):
280c743
Add model with Git LFS
Browse files- .gitattributes +1 -0
- app.py +87 -0
- dockerfile +14 -0
- requirements.txt +4 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
model/** filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Request
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
4 |
+
import torch
|
5 |
+
import re
|
6 |
+
|
7 |
+
app = FastAPI()
|
8 |
+
|
9 |
+
def split_by_words_and_dot(text, min_words=125, max_words=160, fallback_words=150):
|
10 |
+
import re
|
11 |
+
words = re.findall(r'\S+|\n', text) # giữ nguyên \n như một "từ"
|
12 |
+
chunks = []
|
13 |
+
start = 0
|
14 |
+
while start < len(words):
|
15 |
+
end = min(start + max_words, len(words))
|
16 |
+
# Tìm dấu chấm trong khoảng min_words đến max_words
|
17 |
+
dot_idx = -1
|
18 |
+
for i in range(start + min_words, min(start + max_words, len(words))):
|
19 |
+
if words[i] == '.' or (words[i].endswith('.') and words[i] != '\n'):
|
20 |
+
dot_idx = i
|
21 |
+
if dot_idx != -1:
|
22 |
+
chunk_end = dot_idx + 1
|
23 |
+
elif end - start > fallback_words:
|
24 |
+
chunk_end = start + fallback_words
|
25 |
+
else:
|
26 |
+
chunk_end = end
|
27 |
+
chunk = ' '.join([w if w != '\n' else '\n' for w in words[start:chunk_end]]).replace(' \n ', '\n').replace(' \n', '\n').replace('\n ', '\n')
|
28 |
+
chunks.append(chunk.strip())
|
29 |
+
start = chunk_end
|
30 |
+
return chunks
|
31 |
+
|
32 |
+
# Load model
|
33 |
+
model_path = "./model/facebook-m2m100_418M-fine_tuning"
|
34 |
+
tokenizer = M2M100Tokenizer.from_pretrained(model_path)
|
35 |
+
model = M2M100ForConditionalGeneration.from_pretrained(model_path)
|
36 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
37 |
+
model.to(device)
|
38 |
+
|
39 |
+
class TranslateRequest(BaseModel):
|
40 |
+
text: str
|
41 |
+
source_lang: str
|
42 |
+
target_lang: str
|
43 |
+
|
44 |
+
# @app.post("/translate")
|
45 |
+
# def translate_text(req: TranslateRequest):
|
46 |
+
# tokenizer.src_lang = req.source_lang
|
47 |
+
# encoded = tokenizer(req.text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
48 |
+
# generated_tokens = model.generate(
|
49 |
+
# **encoded,
|
50 |
+
# forced_bos_token_id=tokenizer.get_lang_id(req.target_lang),
|
51 |
+
# max_length=512, # tăng lên nếu cần dịch đoạn dài, nhưng không nên quá lớn
|
52 |
+
# num_beams=2, # giảm beam search để nhanh hơn
|
53 |
+
# no_repeat_ngram_size=3,
|
54 |
+
# early_stopping=True
|
55 |
+
# )
|
56 |
+
# translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
57 |
+
# return {
|
58 |
+
# "source_text": req.text,
|
59 |
+
# "translated_text": translated_text,
|
60 |
+
# "src_lang": req.source_lang,
|
61 |
+
# "tgt_lang": req.target_lang
|
62 |
+
# }
|
63 |
+
|
64 |
+
|
65 |
+
@app.post("/translate")
|
66 |
+
def translate_text(req: TranslateRequest):
|
67 |
+
tokenizer.src_lang = req.source_lang
|
68 |
+
text_chunks = split_by_words_and_dot(req.text, min_words=125, max_words=160, fallback_words=150)
|
69 |
+
translated_chunks = []
|
70 |
+
for chunk in text_chunks:
|
71 |
+
encoded = tokenizer(chunk, return_tensors="pt", truncation=True, max_length=256).to(device)
|
72 |
+
generated_tokens = model.generate(
|
73 |
+
**encoded,
|
74 |
+
forced_bos_token_id=tokenizer.get_lang_id(req.target_lang),
|
75 |
+
max_length=256,
|
76 |
+
num_beams=2,
|
77 |
+
no_repeat_ngram_size=3,
|
78 |
+
)
|
79 |
+
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
80 |
+
translated_chunks.append(translated_text)
|
81 |
+
full_translation = "\n".join(translated_chunks)
|
82 |
+
return {
|
83 |
+
"source_text": req.text,
|
84 |
+
"translated_text": full_translation,
|
85 |
+
"src_lang": req.source_lang,
|
86 |
+
"tgt_lang": req.target_lang
|
87 |
+
}
|
dockerfile
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim-bullseye
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
# Cài g++ để tránh lỗi transformers build lại tokenizer
|
6 |
+
RUN apt-get update && apt-get install -y g++ && apt-get upgrade -y && apt-get clean && rm -rf /var/lib/apt/lists/*
|
7 |
+
|
8 |
+
COPY requirements.txt .
|
9 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
10 |
+
|
11 |
+
COPY . .
|
12 |
+
|
13 |
+
# Mặc định FastAPI chạy bằng Uvicorn
|
14 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
torch
|
4 |
+
transformers
|