lshzhm commited on
Commit
99bbd30
·
verified ·
1 Parent(s): f2e1e83

init commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +15 -0
  2. .gitignore +10 -0
  3. F5-TTS/Dockerfile +26 -0
  4. F5-TTS/LICENSE +21 -0
  5. F5-TTS/README.md +174 -0
  6. F5-TTS/ckpts/README.md +10 -0
  7. F5-TTS/data/Emilia_ZH_EN_pinyin/vocab.txt +2545 -0
  8. F5-TTS/data/librispeech_pc_test_clean_cross_sentence.lst +0 -0
  9. F5-TTS/data/v2c_test.lst +0 -0
  10. F5-TTS/data/v2c_test_s3.lst +0 -0
  11. F5-TTS/pyproject.toml +62 -0
  12. F5-TTS/ruff.toml +10 -0
  13. F5-TTS/src/f5_tts/api.py +174 -0
  14. F5-TTS/src/f5_tts/configs/E2TTS_Base_train.yaml +45 -0
  15. F5-TTS/src/f5_tts/configs/E2TTS_Small_train.yaml +45 -0
  16. F5-TTS/src/f5_tts/configs/F5TTS_Base_train.yaml +48 -0
  17. F5-TTS/src/f5_tts/configs/F5TTS_Small_train.yaml +48 -0
  18. F5-TTS/src/f5_tts/eval/README.md +52 -0
  19. F5-TTS/src/f5_tts/eval/ecapa_tdnn.py +330 -0
  20. F5-TTS/src/f5_tts/eval/eval_infer_batch.py +207 -0
  21. F5-TTS/src/f5_tts/eval/eval_infer_batch.sh +13 -0
  22. F5-TTS/src/f5_tts/eval/eval_librispeech_test_clean.py +100 -0
  23. F5-TTS/src/f5_tts/eval/eval_seedtts_testset.py +95 -0
  24. F5-TTS/src/f5_tts/eval/eval_utmos.py +44 -0
  25. F5-TTS/src/f5_tts/eval/eval_v2c_test.py +100 -0
  26. F5-TTS/src/f5_tts/eval/utils_eval.py +419 -0
  27. F5-TTS/src/f5_tts/infer/README.md +196 -0
  28. F5-TTS/src/f5_tts/infer/SHARED.md +164 -0
  29. F5-TTS/src/f5_tts/infer/examples/basic/basic.toml +11 -0
  30. F5-TTS/src/f5_tts/infer/examples/basic/basic_ref_en.wav +3 -0
  31. F5-TTS/src/f5_tts/infer/examples/basic/basic_ref_zh.wav +3 -0
  32. F5-TTS/src/f5_tts/infer/examples/multi/country.flac +3 -0
  33. F5-TTS/src/f5_tts/infer/examples/multi/main.flac +3 -0
  34. F5-TTS/src/f5_tts/infer/examples/multi/story.toml +20 -0
  35. F5-TTS/src/f5_tts/infer/examples/multi/story.txt +1 -0
  36. F5-TTS/src/f5_tts/infer/examples/multi/town.flac +3 -0
  37. F5-TTS/src/f5_tts/infer/examples/vocab.txt +2545 -0
  38. F5-TTS/src/f5_tts/infer/infer_cli.py +587 -0
  39. F5-TTS/src/f5_tts/infer/infer_cli_libritts.py +478 -0
  40. F5-TTS/src/f5_tts/infer/infer_cli_s3.py +571 -0
  41. F5-TTS/src/f5_tts/infer/infer_cli_test.py +486 -0
  42. F5-TTS/src/f5_tts/infer/infer_cli_tts_test.py +440 -0
  43. F5-TTS/src/f5_tts/infer/infer_gradio.py +888 -0
  44. F5-TTS/src/f5_tts/infer/speech_edit.py +201 -0
  45. F5-TTS/src/f5_tts/infer/utils_infer.py +572 -0
  46. F5-TTS/src/f5_tts/model/__init__.py +10 -0
  47. F5-TTS/src/f5_tts/model/backbones/README.md +20 -0
  48. F5-TTS/src/f5_tts/model/backbones/dit.py +185 -0
  49. F5-TTS/src/f5_tts/model/backbones/mmdit.py +146 -0
  50. F5-TTS/src/f5_tts/model/backbones/unett.py +219 -0
.gitattributes CHANGED
@@ -33,3 +33,18 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ F5-TTS/src/f5_tts/infer/examples/basic/basic_ref_en.wav filter=lfs diff=lfs merge=lfs -text
37
+ F5-TTS/src/f5_tts/infer/examples/basic/basic_ref_zh.wav filter=lfs diff=lfs merge=lfs -text
38
+ F5-TTS/src/f5_tts/infer/examples/multi/country.flac filter=lfs diff=lfs merge=lfs -text
39
+ F5-TTS/src/f5_tts/infer/examples/multi/main.flac filter=lfs diff=lfs merge=lfs -text
40
+ F5-TTS/src/f5_tts/infer/examples/multi/town.flac filter=lfs diff=lfs merge=lfs -text
41
+ MMAudio/training/example_audios/00008004.flac filter=lfs diff=lfs merge=lfs -text
42
+ MMAudio/training/example_audios/00008009.flac filter=lfs diff=lfs merge=lfs -text
43
+ MMAudio/training/example_videos/0B4dYTMsgHA_000130.mp4 filter=lfs diff=lfs merge=lfs -text
44
+ MMAudio/training/example_videos/F8Zt3mYlOqU_000094.mp4 filter=lfs diff=lfs merge=lfs -text
45
+ tests/0235.mp4 filter=lfs diff=lfs merge=lfs -text
46
+ tests/0778.mp4 filter=lfs diff=lfs merge=lfs -text
47
+ tests/4992-23283-0000.wav filter=lfs diff=lfs merge=lfs -text
48
+ tests/4992-41806-0009.wav filter=lfs diff=lfs merge=lfs -text
49
+ tests/Gobber-00-0235.wav filter=lfs diff=lfs merge=lfs -text
50
+ tests/Gobber-00-0778.wav filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ MMAudio/ext_weights/
2
+ MMAudio/weights/
3
+ F5-TTS/ckpts/faster-whisper-large-v3/
4
+ F5-TTS/ckpts/v2c/
5
+ F5-TTS/ckpts/wavlm_large_finetune.pth
6
+ F5-TTS/src/f5_tts.egg-info/
7
+ **/__pycache__
8
+ tests/outputs_v2c_l44_test/
9
+ tests/outputs_v2a_l44_test/
10
+ tests/outputs_tts/
F5-TTS/Dockerfile ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM pytorch/pytorch:2.4.0-cuda12.4-cudnn9-devel
2
+
3
+ USER root
4
+
5
+ ARG DEBIAN_FRONTEND=noninteractive
6
+
7
+ LABEL github_repo="https://github.com/SWivid/F5-TTS"
8
+
9
+ RUN set -x \
10
+ && apt-get update \
11
+ && apt-get -y install wget curl man git less openssl libssl-dev unzip unar build-essential aria2 tmux vim \
12
+ && apt-get install -y openssh-server sox libsox-fmt-all libsox-fmt-mp3 libsndfile1-dev ffmpeg \
13
+ && apt-get install -y librdmacm1 libibumad3 librdmacm-dev libibverbs1 libibverbs-dev ibverbs-utils ibverbs-providers \
14
+ && rm -rf /var/lib/apt/lists/* \
15
+ && apt-get clean
16
+
17
+ WORKDIR /workspace
18
+
19
+ RUN git clone https://github.com/SWivid/F5-TTS.git \
20
+ && cd F5-TTS \
21
+ && git submodule update --init --recursive \
22
+ && pip install -e . --no-cache-dir
23
+
24
+ ENV SHELL=/bin/bash
25
+
26
+ WORKDIR /workspace/F5-TTS
F5-TTS/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2024 Yushen CHEN
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
F5-TTS/README.md ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching
2
+
3
+ [![python](https://img.shields.io/badge/Python-3.10-brightgreen)](https://github.com/SWivid/F5-TTS)
4
+ [![arXiv](https://img.shields.io/badge/arXiv-2410.06885-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2410.06885)
5
+ [![demo](https://img.shields.io/badge/GitHub-Demo%20page-orange.svg)](https://swivid.github.io/F5-TTS/)
6
+ [![hfspace](https://img.shields.io/badge/🤗-Space%20demo-yellow)](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
7
+ [![msspace](https://img.shields.io/badge/🤖-Space%20demo-blue)](https://modelscope.cn/studios/modelscope/E2-F5-TTS)
8
+ [![lab](https://img.shields.io/badge/X--LANCE-Lab-grey?labelColor=lightgrey)](https://x-lance.sjtu.edu.cn/)
9
+ [![lab](https://img.shields.io/badge/Peng%20Cheng-Lab-grey?labelColor=lightgrey)](https://www.pcl.ac.cn)
10
+ <!-- <img src="https://github.com/user-attachments/assets/12d7749c-071a-427c-81bf-b87b91def670" alt="Watermark" style="width: 40px; height: auto"> -->
11
+
12
+ **F5-TTS**: Diffusion Transformer with ConvNeXt V2, faster trained and inference.
13
+
14
+ **E2 TTS**: Flat-UNet Transformer, closest reproduction from [paper](https://arxiv.org/abs/2406.18009).
15
+
16
+ **Sway Sampling**: Inference-time flow step sampling strategy, greatly improves performance
17
+
18
+ ### Thanks to all the contributors !
19
+
20
+ ## News
21
+ - **2024/10/08**: F5-TTS & E2 TTS base models on [🤗 Hugging Face](https://huggingface.co/SWivid/F5-TTS), [🤖 Model Scope](https://www.modelscope.cn/models/SWivid/F5-TTS_Emilia-ZH-EN), [🟣 Wisemodel](https://wisemodel.cn/models/SJTU_X-LANCE/F5-TTS_Emilia-ZH-EN).
22
+
23
+ ## Installation
24
+
25
+ ```bash
26
+ # Create a python 3.10 conda env (you could also use virtualenv)
27
+ conda create -n f5-tts python=3.10
28
+ conda activate f5-tts
29
+
30
+ # NVIDIA GPU: install pytorch with your CUDA version, e.g.
31
+ pip install torch==2.3.0+cu118 torchaudio==2.3.0+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
32
+
33
+ # AMD GPU: install pytorch with your ROCm version, e.g. (Linux only)
34
+ pip install torch==2.5.1+rocm6.2 torchaudio==2.5.1+rocm6.2 --extra-index-url https://download.pytorch.org/whl/rocm6.2
35
+
36
+ # Intel GPU: install pytorch with your XPU version, e.g.
37
+ # Intel® Deep Learning Essentials or Intel® oneAPI Base Toolkit must be installed
38
+ pip install --pre torch torchaudio --index-url https://download.pytorch.org/whl/nightly/xpu
39
+ ```
40
+
41
+ Then you can choose from a few options below:
42
+
43
+ ### 1. As a pip package (if just for inference)
44
+
45
+ ```bash
46
+ pip install git+https://github.com/SWivid/F5-TTS.git
47
+ ```
48
+
49
+ ### 2. Local editable (if also do training, finetuning)
50
+
51
+ ```bash
52
+ git clone https://github.com/SWivid/F5-TTS.git
53
+ cd F5-TTS
54
+ # git submodule update --init --recursive # (optional, if need bigvgan)
55
+ pip install -e .
56
+ ```
57
+
58
+ ### 3. Docker usage
59
+ ```bash
60
+ # Build from Dockerfile
61
+ docker build -t f5tts:v1 .
62
+
63
+ # Or pull from GitHub Container Registry
64
+ docker pull ghcr.io/swivid/f5-tts:main
65
+ ```
66
+
67
+
68
+ ## Inference
69
+
70
+ ### 1. Gradio App
71
+
72
+ Currently supported features:
73
+
74
+ - Basic TTS with Chunk Inference
75
+ - Multi-Style / Multi-Speaker Generation
76
+ - Voice Chat powered by Qwen2.5-3B-Instruct
77
+ - [Custom inference with more language support](src/f5_tts/infer/SHARED.md)
78
+
79
+ ```bash
80
+ # Launch a Gradio app (web interface)
81
+ f5-tts_infer-gradio
82
+
83
+ # Specify the port/host
84
+ f5-tts_infer-gradio --port 7860 --host 0.0.0.0
85
+
86
+ # Launch a share link
87
+ f5-tts_infer-gradio --share
88
+ ```
89
+
90
+ ### 2. CLI Inference
91
+
92
+ ```bash
93
+ # Run with flags
94
+ # Leave --ref_text "" will have ASR model transcribe (extra GPU memory usage)
95
+ f5-tts_infer-cli \
96
+ --model "F5-TTS" \
97
+ --ref_audio "ref_audio.wav" \
98
+ --ref_text "The content, subtitle or transcription of reference audio." \
99
+ --gen_text "Some text you want TTS model generate for you."
100
+
101
+ # Run with default setting. src/f5_tts/infer/examples/basic/basic.toml
102
+ f5-tts_infer-cli
103
+ # Or with your own .toml file
104
+ f5-tts_infer-cli -c custom.toml
105
+
106
+ # Multi voice. See src/f5_tts/infer/README.md
107
+ f5-tts_infer-cli -c src/f5_tts/infer/examples/multi/story.toml
108
+ ```
109
+
110
+ ### 3. More instructions
111
+
112
+ - In order to have better generation results, take a moment to read [detailed guidance](src/f5_tts/infer).
113
+ - The [Issues](https://github.com/SWivid/F5-TTS/issues?q=is%3Aissue) are very useful, please try to find the solution by properly searching the keywords of problem encountered. If no answer found, then feel free to open an issue.
114
+
115
+
116
+ ## Training
117
+
118
+ ### 1. Gradio App
119
+
120
+ Read [training & finetuning guidance](src/f5_tts/train) for more instructions.
121
+
122
+ ```bash
123
+ # Quick start with Gradio web interface
124
+ f5-tts_finetune-gradio
125
+ ```
126
+
127
+
128
+ ## [Evaluation](src/f5_tts/eval)
129
+
130
+
131
+ ## Development
132
+
133
+ Use pre-commit to ensure code quality (will run linters and formatters automatically)
134
+
135
+ ```bash
136
+ pip install pre-commit
137
+ pre-commit install
138
+ ```
139
+
140
+ When making a pull request, before each commit, run:
141
+
142
+ ```bash
143
+ pre-commit run --all-files
144
+ ```
145
+
146
+ Note: Some model components have linting exceptions for E722 to accommodate tensor notation
147
+
148
+
149
+ ## Acknowledgements
150
+
151
+ - [E2-TTS](https://arxiv.org/abs/2406.18009) brilliant work, simple and effective
152
+ - [Emilia](https://arxiv.org/abs/2407.05361), [WenetSpeech4TTS](https://arxiv.org/abs/2406.05763), [LibriTTS](https://arxiv.org/abs/1904.02882), [LJSpeech](https://keithito.com/LJ-Speech-Dataset/) valuable datasets
153
+ - [lucidrains](https://github.com/lucidrains) initial CFM structure with also [bfs18](https://github.com/bfs18) for discussion
154
+ - [SD3](https://arxiv.org/abs/2403.03206) & [Hugging Face diffusers](https://github.com/huggingface/diffusers) DiT and MMDiT code structure
155
+ - [torchdiffeq](https://github.com/rtqichen/torchdiffeq) as ODE solver, [Vocos](https://huggingface.co/charactr/vocos-mel-24khz) and [BigVGAN](https://github.com/NVIDIA/BigVGAN) as vocoder
156
+ - [FunASR](https://github.com/modelscope/FunASR), [faster-whisper](https://github.com/SYSTRAN/faster-whisper), [UniSpeech](https://github.com/microsoft/UniSpeech), [SpeechMOS](https://github.com/tarepan/SpeechMOS) for evaluation tools
157
+ - [ctc-forced-aligner](https://github.com/MahmoudAshraf97/ctc-forced-aligner) for speech edit test
158
+ - [mrfakename](https://x.com/realmrfakename) huggingface space demo ~
159
+ - [f5-tts-mlx](https://github.com/lucasnewman/f5-tts-mlx/tree/main) Implementation with MLX framework by [Lucas Newman](https://github.com/lucasnewman)
160
+ - [F5-TTS-ONNX](https://github.com/DakeQQ/F5-TTS-ONNX) ONNX Runtime version by [DakeQQ](https://github.com/DakeQQ)
161
+
162
+ ## Citation
163
+ If our work and codebase is useful for you, please cite as:
164
+ ```
165
+ @article{chen-etal-2024-f5tts,
166
+ title={F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching},
167
+ author={Yushen Chen and Zhikang Niu and Ziyang Ma and Keqi Deng and Chunhui Wang and Jian Zhao and Kai Yu and Xie Chen},
168
+ journal={arXiv preprint arXiv:2410.06885},
169
+ year={2024},
170
+ }
171
+ ```
172
+ ## License
173
+
174
+ Our code is released under MIT License. The pre-trained models are licensed under the CC-BY-NC license due to the training data Emilia, which is an in-the-wild dataset. Sorry for any inconvenience this may cause.
F5-TTS/ckpts/README.md ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Pretrained model ckpts. https://huggingface.co/SWivid/F5-TTS
3
+
4
+ ```
5
+ ckpts/
6
+ E2TTS_Base/
7
+ model_1200000.pt
8
+ F5TTS_Base/
9
+ model_1200000.pt
10
+ ```
F5-TTS/data/Emilia_ZH_EN_pinyin/vocab.txt ADDED
@@ -0,0 +1,2545 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ !
3
+ "
4
+ #
5
+ $
6
+ %
7
+ &
8
+ '
9
+ (
10
+ )
11
+ *
12
+ +
13
+ ,
14
+ -
15
+ .
16
+ /
17
+ 0
18
+ 1
19
+ 2
20
+ 3
21
+ 4
22
+ 5
23
+ 6
24
+ 7
25
+ 8
26
+ 9
27
+ :
28
+ ;
29
+ =
30
+ >
31
+ ?
32
+ @
33
+ A
34
+ B
35
+ C
36
+ D
37
+ E
38
+ F
39
+ G
40
+ H
41
+ I
42
+ J
43
+ K
44
+ L
45
+ M
46
+ N
47
+ O
48
+ P
49
+ Q
50
+ R
51
+ S
52
+ T
53
+ U
54
+ V
55
+ W
56
+ X
57
+ Y
58
+ Z
59
+ [
60
+ \
61
+ ]
62
+ _
63
+ a
64
+ a1
65
+ ai1
66
+ ai2
67
+ ai3
68
+ ai4
69
+ an1
70
+ an3
71
+ an4
72
+ ang1
73
+ ang2
74
+ ang4
75
+ ao1
76
+ ao2
77
+ ao3
78
+ ao4
79
+ b
80
+ ba
81
+ ba1
82
+ ba2
83
+ ba3
84
+ ba4
85
+ bai1
86
+ bai2
87
+ bai3
88
+ bai4
89
+ ban1
90
+ ban2
91
+ ban3
92
+ ban4
93
+ bang1
94
+ bang2
95
+ bang3
96
+ bang4
97
+ bao1
98
+ bao2
99
+ bao3
100
+ bao4
101
+ bei
102
+ bei1
103
+ bei2
104
+ bei3
105
+ bei4
106
+ ben1
107
+ ben2
108
+ ben3
109
+ ben4
110
+ beng
111
+ beng1
112
+ beng2
113
+ beng3
114
+ beng4
115
+ bi1
116
+ bi2
117
+ bi3
118
+ bi4
119
+ bian1
120
+ bian2
121
+ bian3
122
+ bian4
123
+ biao1
124
+ biao2
125
+ biao3
126
+ bie1
127
+ bie2
128
+ bie3
129
+ bie4
130
+ bin1
131
+ bin4
132
+ bing1
133
+ bing2
134
+ bing3
135
+ bing4
136
+ bo
137
+ bo1
138
+ bo2
139
+ bo3
140
+ bo4
141
+ bu2
142
+ bu3
143
+ bu4
144
+ c
145
+ ca1
146
+ cai1
147
+ cai2
148
+ cai3
149
+ cai4
150
+ can1
151
+ can2
152
+ can3
153
+ can4
154
+ cang1
155
+ cang2
156
+ cao1
157
+ cao2
158
+ cao3
159
+ ce4
160
+ cen1
161
+ cen2
162
+ ceng1
163
+ ceng2
164
+ ceng4
165
+ cha1
166
+ cha2
167
+ cha3
168
+ cha4
169
+ chai1
170
+ chai2
171
+ chan1
172
+ chan2
173
+ chan3
174
+ chan4
175
+ chang1
176
+ chang2
177
+ chang3
178
+ chang4
179
+ chao1
180
+ chao2
181
+ chao3
182
+ che1
183
+ che2
184
+ che3
185
+ che4
186
+ chen1
187
+ chen2
188
+ chen3
189
+ chen4
190
+ cheng1
191
+ cheng2
192
+ cheng3
193
+ cheng4
194
+ chi1
195
+ chi2
196
+ chi3
197
+ chi4
198
+ chong1
199
+ chong2
200
+ chong3
201
+ chong4
202
+ chou1
203
+ chou2
204
+ chou3
205
+ chou4
206
+ chu1
207
+ chu2
208
+ chu3
209
+ chu4
210
+ chua1
211
+ chuai1
212
+ chuai2
213
+ chuai3
214
+ chuai4
215
+ chuan1
216
+ chuan2
217
+ chuan3
218
+ chuan4
219
+ chuang1
220
+ chuang2
221
+ chuang3
222
+ chuang4
223
+ chui1
224
+ chui2
225
+ chun1
226
+ chun2
227
+ chun3
228
+ chuo1
229
+ chuo4
230
+ ci1
231
+ ci2
232
+ ci3
233
+ ci4
234
+ cong1
235
+ cong2
236
+ cou4
237
+ cu1
238
+ cu4
239
+ cuan1
240
+ cuan2
241
+ cuan4
242
+ cui1
243
+ cui3
244
+ cui4
245
+ cun1
246
+ cun2
247
+ cun4
248
+ cuo1
249
+ cuo2
250
+ cuo4
251
+ d
252
+ da
253
+ da1
254
+ da2
255
+ da3
256
+ da4
257
+ dai1
258
+ dai2
259
+ dai3
260
+ dai4
261
+ dan1
262
+ dan2
263
+ dan3
264
+ dan4
265
+ dang1
266
+ dang2
267
+ dang3
268
+ dang4
269
+ dao1
270
+ dao2
271
+ dao3
272
+ dao4
273
+ de
274
+ de1
275
+ de2
276
+ dei3
277
+ den4
278
+ deng1
279
+ deng2
280
+ deng3
281
+ deng4
282
+ di1
283
+ di2
284
+ di3
285
+ di4
286
+ dia3
287
+ dian1
288
+ dian2
289
+ dian3
290
+ dian4
291
+ diao1
292
+ diao3
293
+ diao4
294
+ die1
295
+ die2
296
+ die4
297
+ ding1
298
+ ding2
299
+ ding3
300
+ ding4
301
+ diu1
302
+ dong1
303
+ dong3
304
+ dong4
305
+ dou1
306
+ dou2
307
+ dou3
308
+ dou4
309
+ du1
310
+ du2
311
+ du3
312
+ du4
313
+ duan1
314
+ duan2
315
+ duan3
316
+ duan4
317
+ dui1
318
+ dui4
319
+ dun1
320
+ dun3
321
+ dun4
322
+ duo1
323
+ duo2
324
+ duo3
325
+ duo4
326
+ e
327
+ e1
328
+ e2
329
+ e3
330
+ e4
331
+ ei2
332
+ en1
333
+ en4
334
+ er
335
+ er2
336
+ er3
337
+ er4
338
+ f
339
+ fa1
340
+ fa2
341
+ fa3
342
+ fa4
343
+ fan1
344
+ fan2
345
+ fan3
346
+ fan4
347
+ fang1
348
+ fang2
349
+ fang3
350
+ fang4
351
+ fei1
352
+ fei2
353
+ fei3
354
+ fei4
355
+ fen1
356
+ fen2
357
+ fen3
358
+ fen4
359
+ feng1
360
+ feng2
361
+ feng3
362
+ feng4
363
+ fo2
364
+ fou2
365
+ fou3
366
+ fu1
367
+ fu2
368
+ fu3
369
+ fu4
370
+ g
371
+ ga1
372
+ ga2
373
+ ga3
374
+ ga4
375
+ gai1
376
+ gai2
377
+ gai3
378
+ gai4
379
+ gan1
380
+ gan2
381
+ gan3
382
+ gan4
383
+ gang1
384
+ gang2
385
+ gang3
386
+ gang4
387
+ gao1
388
+ gao2
389
+ gao3
390
+ gao4
391
+ ge1
392
+ ge2
393
+ ge3
394
+ ge4
395
+ gei2
396
+ gei3
397
+ gen1
398
+ gen2
399
+ gen3
400
+ gen4
401
+ geng1
402
+ geng3
403
+ geng4
404
+ gong1
405
+ gong3
406
+ gong4
407
+ gou1
408
+ gou2
409
+ gou3
410
+ gou4
411
+ gu
412
+ gu1
413
+ gu2
414
+ gu3
415
+ gu4
416
+ gua1
417
+ gua2
418
+ gua3
419
+ gua4
420
+ guai1
421
+ guai2
422
+ guai3
423
+ guai4
424
+ guan1
425
+ guan2
426
+ guan3
427
+ guan4
428
+ guang1
429
+ guang2
430
+ guang3
431
+ guang4
432
+ gui1
433
+ gui2
434
+ gui3
435
+ gui4
436
+ gun3
437
+ gun4
438
+ guo1
439
+ guo2
440
+ guo3
441
+ guo4
442
+ h
443
+ ha1
444
+ ha2
445
+ ha3
446
+ hai1
447
+ hai2
448
+ hai3
449
+ hai4
450
+ han1
451
+ han2
452
+ han3
453
+ han4
454
+ hang1
455
+ hang2
456
+ hang4
457
+ hao1
458
+ hao2
459
+ hao3
460
+ hao4
461
+ he1
462
+ he2
463
+ he4
464
+ hei1
465
+ hen2
466
+ hen3
467
+ hen4
468
+ heng1
469
+ heng2
470
+ heng4
471
+ hong1
472
+ hong2
473
+ hong3
474
+ hong4
475
+ hou1
476
+ hou2
477
+ hou3
478
+ hou4
479
+ hu1
480
+ hu2
481
+ hu3
482
+ hu4
483
+ hua1
484
+ hua2
485
+ hua4
486
+ huai2
487
+ huai4
488
+ huan1
489
+ huan2
490
+ huan3
491
+ huan4
492
+ huang1
493
+ huang2
494
+ huang3
495
+ huang4
496
+ hui1
497
+ hui2
498
+ hui3
499
+ hui4
500
+ hun1
501
+ hun2
502
+ hun4
503
+ huo
504
+ huo1
505
+ huo2
506
+ huo3
507
+ huo4
508
+ i
509
+ j
510
+ ji1
511
+ ji2
512
+ ji3
513
+ ji4
514
+ jia
515
+ jia1
516
+ jia2
517
+ jia3
518
+ jia4
519
+ jian1
520
+ jian2
521
+ jian3
522
+ jian4
523
+ jiang1
524
+ jiang2
525
+ jiang3
526
+ jiang4
527
+ jiao1
528
+ jiao2
529
+ jiao3
530
+ jiao4
531
+ jie1
532
+ jie2
533
+ jie3
534
+ jie4
535
+ jin1
536
+ jin2
537
+ jin3
538
+ jin4
539
+ jing1
540
+ jing2
541
+ jing3
542
+ jing4
543
+ jiong3
544
+ jiu1
545
+ jiu2
546
+ jiu3
547
+ jiu4
548
+ ju1
549
+ ju2
550
+ ju3
551
+ ju4
552
+ juan1
553
+ juan2
554
+ juan3
555
+ juan4
556
+ jue1
557
+ jue2
558
+ jue4
559
+ jun1
560
+ jun4
561
+ k
562
+ ka1
563
+ ka2
564
+ ka3
565
+ kai1
566
+ kai2
567
+ kai3
568
+ kai4
569
+ kan1
570
+ kan2
571
+ kan3
572
+ kan4
573
+ kang1
574
+ kang2
575
+ kang4
576
+ kao1
577
+ kao2
578
+ kao3
579
+ kao4
580
+ ke1
581
+ ke2
582
+ ke3
583
+ ke4
584
+ ken3
585
+ keng1
586
+ kong1
587
+ kong3
588
+ kong4
589
+ kou1
590
+ kou2
591
+ kou3
592
+ kou4
593
+ ku1
594
+ ku2
595
+ ku3
596
+ ku4
597
+ kua1
598
+ kua3
599
+ kua4
600
+ kuai3
601
+ kuai4
602
+ kuan1
603
+ kuan2
604
+ kuan3
605
+ kuang1
606
+ kuang2
607
+ kuang4
608
+ kui1
609
+ kui2
610
+ kui3
611
+ kui4
612
+ kun1
613
+ kun3
614
+ kun4
615
+ kuo4
616
+ l
617
+ la
618
+ la1
619
+ la2
620
+ la3
621
+ la4
622
+ lai2
623
+ lai4
624
+ lan2
625
+ lan3
626
+ lan4
627
+ lang1
628
+ lang2
629
+ lang3
630
+ lang4
631
+ lao1
632
+ lao2
633
+ lao3
634
+ lao4
635
+ le
636
+ le1
637
+ le4
638
+ lei
639
+ lei1
640
+ lei2
641
+ lei3
642
+ lei4
643
+ leng1
644
+ leng2
645
+ leng3
646
+ leng4
647
+ li
648
+ li1
649
+ li2
650
+ li3
651
+ li4
652
+ lia3
653
+ lian2
654
+ lian3
655
+ lian4
656
+ liang2
657
+ liang3
658
+ liang4
659
+ liao1
660
+ liao2
661
+ liao3
662
+ liao4
663
+ lie1
664
+ lie2
665
+ lie3
666
+ lie4
667
+ lin1
668
+ lin2
669
+ lin3
670
+ lin4
671
+ ling2
672
+ ling3
673
+ ling4
674
+ liu1
675
+ liu2
676
+ liu3
677
+ liu4
678
+ long1
679
+ long2
680
+ long3
681
+ long4
682
+ lou1
683
+ lou2
684
+ lou3
685
+ lou4
686
+ lu1
687
+ lu2
688
+ lu3
689
+ lu4
690
+ luan2
691
+ luan3
692
+ luan4
693
+ lun1
694
+ lun2
695
+ lun4
696
+ luo1
697
+ luo2
698
+ luo3
699
+ luo4
700
+ lv2
701
+ lv3
702
+ lv4
703
+ lve3
704
+ lve4
705
+ m
706
+ ma
707
+ ma1
708
+ ma2
709
+ ma3
710
+ ma4
711
+ mai2
712
+ mai3
713
+ mai4
714
+ man1
715
+ man2
716
+ man3
717
+ man4
718
+ mang2
719
+ mang3
720
+ mao1
721
+ mao2
722
+ mao3
723
+ mao4
724
+ me
725
+ mei2
726
+ mei3
727
+ mei4
728
+ men
729
+ men1
730
+ men2
731
+ men4
732
+ meng
733
+ meng1
734
+ meng2
735
+ meng3
736
+ meng4
737
+ mi1
738
+ mi2
739
+ mi3
740
+ mi4
741
+ mian2
742
+ mian3
743
+ mian4
744
+ miao1
745
+ miao2
746
+ miao3
747
+ miao4
748
+ mie1
749
+ mie4
750
+ min2
751
+ min3
752
+ ming2
753
+ ming3
754
+ ming4
755
+ miu4
756
+ mo1
757
+ mo2
758
+ mo3
759
+ mo4
760
+ mou1
761
+ mou2
762
+ mou3
763
+ mu2
764
+ mu3
765
+ mu4
766
+ n
767
+ n2
768
+ na1
769
+ na2
770
+ na3
771
+ na4
772
+ nai2
773
+ nai3
774
+ nai4
775
+ nan1
776
+ nan2
777
+ nan3
778
+ nan4
779
+ nang1
780
+ nang2
781
+ nang3
782
+ nao1
783
+ nao2
784
+ nao3
785
+ nao4
786
+ ne
787
+ ne2
788
+ ne4
789
+ nei3
790
+ nei4
791
+ nen4
792
+ neng2
793
+ ni1
794
+ ni2
795
+ ni3
796
+ ni4
797
+ nian1
798
+ nian2
799
+ nian3
800
+ nian4
801
+ niang2
802
+ niang4
803
+ niao2
804
+ niao3
805
+ niao4
806
+ nie1
807
+ nie4
808
+ nin2
809
+ ning2
810
+ ning3
811
+ ning4
812
+ niu1
813
+ niu2
814
+ niu3
815
+ niu4
816
+ nong2
817
+ nong4
818
+ nou4
819
+ nu2
820
+ nu3
821
+ nu4
822
+ nuan3
823
+ nuo2
824
+ nuo4
825
+ nv2
826
+ nv3
827
+ nve4
828
+ o
829
+ o1
830
+ o2
831
+ ou1
832
+ ou2
833
+ ou3
834
+ ou4
835
+ p
836
+ pa1
837
+ pa2
838
+ pa4
839
+ pai1
840
+ pai2
841
+ pai3
842
+ pai4
843
+ pan1
844
+ pan2
845
+ pan4
846
+ pang1
847
+ pang2
848
+ pang4
849
+ pao1
850
+ pao2
851
+ pao3
852
+ pao4
853
+ pei1
854
+ pei2
855
+ pei4
856
+ pen1
857
+ pen2
858
+ pen4
859
+ peng1
860
+ peng2
861
+ peng3
862
+ peng4
863
+ pi1
864
+ pi2
865
+ pi3
866
+ pi4
867
+ pian1
868
+ pian2
869
+ pian4
870
+ piao1
871
+ piao2
872
+ piao3
873
+ piao4
874
+ pie1
875
+ pie2
876
+ pie3
877
+ pin1
878
+ pin2
879
+ pin3
880
+ pin4
881
+ ping1
882
+ ping2
883
+ po1
884
+ po2
885
+ po3
886
+ po4
887
+ pou1
888
+ pu1
889
+ pu2
890
+ pu3
891
+ pu4
892
+ q
893
+ qi1
894
+ qi2
895
+ qi3
896
+ qi4
897
+ qia1
898
+ qia3
899
+ qia4
900
+ qian1
901
+ qian2
902
+ qian3
903
+ qian4
904
+ qiang1
905
+ qiang2
906
+ qiang3
907
+ qiang4
908
+ qiao1
909
+ qiao2
910
+ qiao3
911
+ qiao4
912
+ qie1
913
+ qie2
914
+ qie3
915
+ qie4
916
+ qin1
917
+ qin2
918
+ qin3
919
+ qin4
920
+ qing1
921
+ qing2
922
+ qing3
923
+ qing4
924
+ qiong1
925
+ qiong2
926
+ qiu1
927
+ qiu2
928
+ qiu3
929
+ qu1
930
+ qu2
931
+ qu3
932
+ qu4
933
+ quan1
934
+ quan2
935
+ quan3
936
+ quan4
937
+ que1
938
+ que2
939
+ que4
940
+ qun2
941
+ r
942
+ ran2
943
+ ran3
944
+ rang1
945
+ rang2
946
+ rang3
947
+ rang4
948
+ rao2
949
+ rao3
950
+ rao4
951
+ re2
952
+ re3
953
+ re4
954
+ ren2
955
+ ren3
956
+ ren4
957
+ reng1
958
+ reng2
959
+ ri4
960
+ rong1
961
+ rong2
962
+ rong3
963
+ rou2
964
+ rou4
965
+ ru2
966
+ ru3
967
+ ru4
968
+ ruan2
969
+ ruan3
970
+ rui3
971
+ rui4
972
+ run4
973
+ ruo4
974
+ s
975
+ sa1
976
+ sa2
977
+ sa3
978
+ sa4
979
+ sai1
980
+ sai4
981
+ san1
982
+ san2
983
+ san3
984
+ san4
985
+ sang1
986
+ sang3
987
+ sang4
988
+ sao1
989
+ sao2
990
+ sao3
991
+ sao4
992
+ se4
993
+ sen1
994
+ seng1
995
+ sha1
996
+ sha2
997
+ sha3
998
+ sha4
999
+ shai1
1000
+ shai2
1001
+ shai3
1002
+ shai4
1003
+ shan1
1004
+ shan3
1005
+ shan4
1006
+ shang
1007
+ shang1
1008
+ shang3
1009
+ shang4
1010
+ shao1
1011
+ shao2
1012
+ shao3
1013
+ shao4
1014
+ she1
1015
+ she2
1016
+ she3
1017
+ she4
1018
+ shei2
1019
+ shen1
1020
+ shen2
1021
+ shen3
1022
+ shen4
1023
+ sheng1
1024
+ sheng2
1025
+ sheng3
1026
+ sheng4
1027
+ shi
1028
+ shi1
1029
+ shi2
1030
+ shi3
1031
+ shi4
1032
+ shou1
1033
+ shou2
1034
+ shou3
1035
+ shou4
1036
+ shu1
1037
+ shu2
1038
+ shu3
1039
+ shu4
1040
+ shua1
1041
+ shua2
1042
+ shua3
1043
+ shua4
1044
+ shuai1
1045
+ shuai3
1046
+ shuai4
1047
+ shuan1
1048
+ shuan4
1049
+ shuang1
1050
+ shuang3
1051
+ shui2
1052
+ shui3
1053
+ shui4
1054
+ shun3
1055
+ shun4
1056
+ shuo1
1057
+ shuo4
1058
+ si1
1059
+ si2
1060
+ si3
1061
+ si4
1062
+ song1
1063
+ song3
1064
+ song4
1065
+ sou1
1066
+ sou3
1067
+ sou4
1068
+ su1
1069
+ su2
1070
+ su4
1071
+ suan1
1072
+ suan4
1073
+ sui1
1074
+ sui2
1075
+ sui3
1076
+ sui4
1077
+ sun1
1078
+ sun3
1079
+ suo
1080
+ suo1
1081
+ suo2
1082
+ suo3
1083
+ t
1084
+ ta1
1085
+ ta2
1086
+ ta3
1087
+ ta4
1088
+ tai1
1089
+ tai2
1090
+ tai4
1091
+ tan1
1092
+ tan2
1093
+ tan3
1094
+ tan4
1095
+ tang1
1096
+ tang2
1097
+ tang3
1098
+ tang4
1099
+ tao1
1100
+ tao2
1101
+ tao3
1102
+ tao4
1103
+ te4
1104
+ teng2
1105
+ ti1
1106
+ ti2
1107
+ ti3
1108
+ ti4
1109
+ tian1
1110
+ tian2
1111
+ tian3
1112
+ tiao1
1113
+ tiao2
1114
+ tiao3
1115
+ tiao4
1116
+ tie1
1117
+ tie2
1118
+ tie3
1119
+ tie4
1120
+ ting1
1121
+ ting2
1122
+ ting3
1123
+ tong1
1124
+ tong2
1125
+ tong3
1126
+ tong4
1127
+ tou
1128
+ tou1
1129
+ tou2
1130
+ tou4
1131
+ tu1
1132
+ tu2
1133
+ tu3
1134
+ tu4
1135
+ tuan1
1136
+ tuan2
1137
+ tui1
1138
+ tui2
1139
+ tui3
1140
+ tui4
1141
+ tun1
1142
+ tun2
1143
+ tun4
1144
+ tuo1
1145
+ tuo2
1146
+ tuo3
1147
+ tuo4
1148
+ u
1149
+ v
1150
+ w
1151
+ wa
1152
+ wa1
1153
+ wa2
1154
+ wa3
1155
+ wa4
1156
+ wai1
1157
+ wai3
1158
+ wai4
1159
+ wan1
1160
+ wan2
1161
+ wan3
1162
+ wan4
1163
+ wang1
1164
+ wang2
1165
+ wang3
1166
+ wang4
1167
+ wei1
1168
+ wei2
1169
+ wei3
1170
+ wei4
1171
+ wen1
1172
+ wen2
1173
+ wen3
1174
+ wen4
1175
+ weng1
1176
+ weng4
1177
+ wo1
1178
+ wo2
1179
+ wo3
1180
+ wo4
1181
+ wu1
1182
+ wu2
1183
+ wu3
1184
+ wu4
1185
+ x
1186
+ xi1
1187
+ xi2
1188
+ xi3
1189
+ xi4
1190
+ xia1
1191
+ xia2
1192
+ xia4
1193
+ xian1
1194
+ xian2
1195
+ xian3
1196
+ xian4
1197
+ xiang1
1198
+ xiang2
1199
+ xiang3
1200
+ xiang4
1201
+ xiao1
1202
+ xiao2
1203
+ xiao3
1204
+ xiao4
1205
+ xie1
1206
+ xie2
1207
+ xie3
1208
+ xie4
1209
+ xin1
1210
+ xin2
1211
+ xin4
1212
+ xing1
1213
+ xing2
1214
+ xing3
1215
+ xing4
1216
+ xiong1
1217
+ xiong2
1218
+ xiu1
1219
+ xiu3
1220
+ xiu4
1221
+ xu
1222
+ xu1
1223
+ xu2
1224
+ xu3
1225
+ xu4
1226
+ xuan1
1227
+ xuan2
1228
+ xuan3
1229
+ xuan4
1230
+ xue1
1231
+ xue2
1232
+ xue3
1233
+ xue4
1234
+ xun1
1235
+ xun2
1236
+ xun4
1237
+ y
1238
+ ya
1239
+ ya1
1240
+ ya2
1241
+ ya3
1242
+ ya4
1243
+ yan1
1244
+ yan2
1245
+ yan3
1246
+ yan4
1247
+ yang1
1248
+ yang2
1249
+ yang3
1250
+ yang4
1251
+ yao1
1252
+ yao2
1253
+ yao3
1254
+ yao4
1255
+ ye1
1256
+ ye2
1257
+ ye3
1258
+ ye4
1259
+ yi
1260
+ yi1
1261
+ yi2
1262
+ yi3
1263
+ yi4
1264
+ yin1
1265
+ yin2
1266
+ yin3
1267
+ yin4
1268
+ ying1
1269
+ ying2
1270
+ ying3
1271
+ ying4
1272
+ yo1
1273
+ yong1
1274
+ yong2
1275
+ yong3
1276
+ yong4
1277
+ you1
1278
+ you2
1279
+ you3
1280
+ you4
1281
+ yu1
1282
+ yu2
1283
+ yu3
1284
+ yu4
1285
+ yuan1
1286
+ yuan2
1287
+ yuan3
1288
+ yuan4
1289
+ yue1
1290
+ yue4
1291
+ yun1
1292
+ yun2
1293
+ yun3
1294
+ yun4
1295
+ z
1296
+ za1
1297
+ za2
1298
+ za3
1299
+ zai1
1300
+ zai3
1301
+ zai4
1302
+ zan1
1303
+ zan2
1304
+ zan3
1305
+ zan4
1306
+ zang1
1307
+ zang4
1308
+ zao1
1309
+ zao2
1310
+ zao3
1311
+ zao4
1312
+ ze2
1313
+ ze4
1314
+ zei2
1315
+ zen3
1316
+ zeng1
1317
+ zeng4
1318
+ zha1
1319
+ zha2
1320
+ zha3
1321
+ zha4
1322
+ zhai1
1323
+ zhai2
1324
+ zhai3
1325
+ zhai4
1326
+ zhan1
1327
+ zhan2
1328
+ zhan3
1329
+ zhan4
1330
+ zhang1
1331
+ zhang2
1332
+ zhang3
1333
+ zhang4
1334
+ zhao1
1335
+ zhao2
1336
+ zhao3
1337
+ zhao4
1338
+ zhe
1339
+ zhe1
1340
+ zhe2
1341
+ zhe3
1342
+ zhe4
1343
+ zhen1
1344
+ zhen2
1345
+ zhen3
1346
+ zhen4
1347
+ zheng1
1348
+ zheng2
1349
+ zheng3
1350
+ zheng4
1351
+ zhi1
1352
+ zhi2
1353
+ zhi3
1354
+ zhi4
1355
+ zhong1
1356
+ zhong2
1357
+ zhong3
1358
+ zhong4
1359
+ zhou1
1360
+ zhou2
1361
+ zhou3
1362
+ zhou4
1363
+ zhu1
1364
+ zhu2
1365
+ zhu3
1366
+ zhu4
1367
+ zhua1
1368
+ zhua2
1369
+ zhua3
1370
+ zhuai1
1371
+ zhuai3
1372
+ zhuai4
1373
+ zhuan1
1374
+ zhuan2
1375
+ zhuan3
1376
+ zhuan4
1377
+ zhuang1
1378
+ zhuang4
1379
+ zhui1
1380
+ zhui4
1381
+ zhun1
1382
+ zhun2
1383
+ zhun3
1384
+ zhuo1
1385
+ zhuo2
1386
+ zi
1387
+ zi1
1388
+ zi2
1389
+ zi3
1390
+ zi4
1391
+ zong1
1392
+ zong2
1393
+ zong3
1394
+ zong4
1395
+ zou1
1396
+ zou2
1397
+ zou3
1398
+ zou4
1399
+ zu1
1400
+ zu2
1401
+ zu3
1402
+ zuan1
1403
+ zuan3
1404
+ zuan4
1405
+ zui2
1406
+ zui3
1407
+ zui4
1408
+ zun1
1409
+ zuo
1410
+ zuo1
1411
+ zuo2
1412
+ zuo3
1413
+ zuo4
1414
+ {
1415
+ ~
1416
+ ¡
1417
+ ¢
1418
+ £
1419
+ ¥
1420
+ §
1421
+ ¨
1422
+ ©
1423
+ «
1424
+ ®
1425
+ ¯
1426
+ °
1427
+ ±
1428
+ ²
1429
+ ³
1430
+ ´
1431
+ µ
1432
+ ·
1433
+ ¹
1434
+ º
1435
+ »
1436
+ ¼
1437
+ ½
1438
+ ¾
1439
+ ¿
1440
+ À
1441
+ Á
1442
+ Â
1443
+ Ã
1444
+ Ä
1445
+ Å
1446
+ Æ
1447
+ Ç
1448
+ È
1449
+ É
1450
+ Ê
1451
+ Í
1452
+ Î
1453
+ Ñ
1454
+ Ó
1455
+ Ö
1456
+ ×
1457
+ Ø
1458
+ Ú
1459
+ Ü
1460
+ Ý
1461
+ Þ
1462
+ ß
1463
+ à
1464
+ á
1465
+ â
1466
+ ã
1467
+ ä
1468
+ å
1469
+ æ
1470
+ ç
1471
+ è
1472
+ é
1473
+ ê
1474
+ ë
1475
+ ì
1476
+ í
1477
+ î
1478
+ ï
1479
+ ð
1480
+ ñ
1481
+ ò
1482
+ ó
1483
+ ô
1484
+ õ
1485
+ ö
1486
+ ø
1487
+ ù
1488
+ ú
1489
+ û
1490
+ ü
1491
+ ý
1492
+ Ā
1493
+ ā
1494
+ ă
1495
+ ą
1496
+ ć
1497
+ Č
1498
+ č
1499
+ Đ
1500
+ đ
1501
+ ē
1502
+ ė
1503
+ ę
1504
+ ě
1505
+ ĝ
1506
+ ğ
1507
+ ħ
1508
+ ī
1509
+ į
1510
+ İ
1511
+ ı
1512
+ Ł
1513
+ ł
1514
+ ń
1515
+ ņ
1516
+ ň
1517
+ ŋ
1518
+ Ō
1519
+ ō
1520
+ ő
1521
+ œ
1522
+ ř
1523
+ Ś
1524
+ ś
1525
+ Ş
1526
+ ş
1527
+ Š
1528
+ š
1529
+ Ť
1530
+ ť
1531
+ ũ
1532
+ ū
1533
+ ź
1534
+ Ż
1535
+ ż
1536
+ Ž
1537
+ ž
1538
+ ơ
1539
+ ư
1540
+ ǎ
1541
+ ǐ
1542
+ ǒ
1543
+ ǔ
1544
+ ǚ
1545
+ ș
1546
+ ț
1547
+ ɑ
1548
+ ɔ
1549
+ ɕ
1550
+ ə
1551
+ ɛ
1552
+ ɜ
1553
+ ɡ
1554
+ ɣ
1555
+ ɪ
1556
+ ɫ
1557
+ ɴ
1558
+ ɹ
1559
+ ɾ
1560
+ ʃ
1561
+ ʊ
1562
+ ʌ
1563
+ ʒ
1564
+ ʔ
1565
+ ʰ
1566
+ ʷ
1567
+ ʻ
1568
+ ʾ
1569
+ ʿ
1570
+ ˈ
1571
+ ː
1572
+ ˙
1573
+ ˜
1574
+ ˢ
1575
+ ́
1576
+ ̅
1577
+ Α
1578
+ Β
1579
+ Δ
1580
+ Ε
1581
+ Θ
1582
+ Κ
1583
+ Λ
1584
+ Μ
1585
+ Ξ
1586
+ Π
1587
+ Σ
1588
+ Τ
1589
+ Φ
1590
+ Χ
1591
+ Ψ
1592
+ Ω
1593
+ ά
1594
+ έ
1595
+ ή
1596
+ ί
1597
+ α
1598
+ β
1599
+ γ
1600
+ δ
1601
+ ε
1602
+ ζ
1603
+ η
1604
+ θ
1605
+ ι
1606
+ κ
1607
+ λ
1608
+ μ
1609
+ ν
1610
+ ξ
1611
+ ο
1612
+ π
1613
+ ρ
1614
+ ς
1615
+ σ
1616
+ τ
1617
+ υ
1618
+ φ
1619
+ χ
1620
+ ψ
1621
+ ω
1622
+ ϊ
1623
+ ό
1624
+ ύ
1625
+ ώ
1626
+ ϕ
1627
+ ϵ
1628
+ Ё
1629
+ А
1630
+ Б
1631
+ В
1632
+ Г
1633
+ Д
1634
+ Е
1635
+ Ж
1636
+ З
1637
+ И
1638
+ Й
1639
+ К
1640
+ Л
1641
+ М
1642
+ Н
1643
+ О
1644
+ П
1645
+ Р
1646
+ С
1647
+ Т
1648
+ У
1649
+ Ф
1650
+ Х
1651
+ Ц
1652
+ Ч
1653
+ Ш
1654
+ Щ
1655
+ Ы
1656
+ Ь
1657
+ Э
1658
+ Ю
1659
+ Я
1660
+ а
1661
+ б
1662
+ в
1663
+ г
1664
+ д
1665
+ е
1666
+ ж
1667
+ з
1668
+ и
1669
+ й
1670
+ к
1671
+ л
1672
+ м
1673
+ н
1674
+ о
1675
+ п
1676
+ р
1677
+ с
1678
+ т
1679
+ у
1680
+ ф
1681
+ х
1682
+ ц
1683
+ ч
1684
+ ш
1685
+ щ
1686
+ ъ
1687
+ ы
1688
+ ь
1689
+ э
1690
+ ю
1691
+ я
1692
+ ё
1693
+ і
1694
+ ְ
1695
+ ִ
1696
+ ֵ
1697
+ ֶ
1698
+ ַ
1699
+ ָ
1700
+ ֹ
1701
+ ּ
1702
+ ־
1703
+ ׁ
1704
+ א
1705
+ ב
1706
+ ג
1707
+ ד
1708
+ ה
1709
+ ו
1710
+ ז
1711
+ ח
1712
+ ט
1713
+ י
1714
+ כ
1715
+ ל
1716
+ ם
1717
+ מ
1718
+ ן
1719
+ נ
1720
+ ס
1721
+ ע
1722
+ פ
1723
+ ק
1724
+ ר
1725
+ ש
1726
+ ת
1727
+ أ
1728
+ ب
1729
+ ة
1730
+ ت
1731
+ ج
1732
+ ح
1733
+ د
1734
+ ر
1735
+ ز
1736
+ س
1737
+ ص
1738
+ ط
1739
+ ع
1740
+ ق
1741
+ ك
1742
+ ل
1743
+ م
1744
+ ن
1745
+ ه
1746
+ و
1747
+ ي
1748
+ َ
1749
+ ُ
1750
+ ِ
1751
+ ْ
1752
+
1753
+
1754
+
1755
+
1756
+
1757
+
1758
+
1759
+
1760
+
1761
+
1762
+
1763
+
1764
+
1765
+
1766
+
1767
+
1768
+
1769
+
1770
+
1771
+
1772
+
1773
+
1774
+
1775
+
1776
+
1777
+
1778
+
1779
+
1780
+
1781
+
1782
+
1783
+
1784
+
1785
+
1786
+
1787
+
1788
+
1789
+
1790
+
1791
+
1792
+
1793
+
1794
+
1795
+
1796
+
1797
+
1798
+
1799
+
1800
+ ế
1801
+
1802
+
1803
+
1804
+
1805
+
1806
+
1807
+
1808
+
1809
+
1810
+
1811
+
1812
+
1813
+
1814
+
1815
+
1816
+
1817
+
1818
+
1819
+
1820
+
1821
+
1822
+
1823
+
1824
+
1825
+
1826
+
1827
+
1828
+
1829
+
1830
+
1831
+
1832
+
1833
+
1834
+
1835
+
1836
+
1837
+
1838
+
1839
+
1840
+
1841
+
1842
+
1843
+
1844
+
1845
+
1846
+
1847
+
1848
+
1849
+
1850
+
1851
+
1852
+
1853
+
1854
+
1855
+
1856
+
1857
+
1858
+
1859
+
1860
+
1861
+
1862
+
1863
+
1864
+
1865
+
1866
+
1867
+
1868
+
1869
+
1870
+
1871
+
1872
+
1873
+
1874
+
1875
+
1876
+
1877
+
1878
+
1879
+
1880
+
1881
+
1882
+
1883
+
1884
+
1885
+
1886
+
1887
+
1888
+
1889
+
1890
+
1891
+
1892
+
1893
+
1894
+
1895
+
1896
+
1897
+
1898
+
1899
+
1900
+
1901
+
1902
+
1903
+
1904
+
1905
+
1906
+
1907
+
1908
+
1909
+
1910
+
1911
+
1912
+
1913
+
1914
+
1915
+
1916
+
1917
+
1918
+
1919
+
1920
+
1921
+
1922
+
1923
+
1924
+
1925
+
1926
+
1927
+
1928
+
1929
+
1930
+
1931
+
1932
+
1933
+
1934
+
1935
+
1936
+
1937
+
1938
+
1939
+
1940
+
1941
+
1942
+
1943
+
1944
+
1945
+
1946
+
1947
+
1948
+
1949
+
1950
+
1951
+
1952
+
1953
+
1954
+
1955
+
1956
+
1957
+
1958
+
1959
+
1960
+
1961
+
1962
+
1963
+
1964
+
1965
+
1966
+
1967
+
1968
+
1969
+
1970
+
1971
+
1972
+
1973
+
1974
+
1975
+
1976
+
1977
+
1978
+
1979
+
1980
+
1981
+
1982
+
1983
+
1984
+
1985
+
1986
+
1987
+
1988
+
1989
+
1990
+
1991
+
1992
+
1993
+
1994
+
1995
+
1996
+
1997
+
1998
+
1999
+
2000
+
2001
+
2002
+
2003
+
2004
+
2005
+
2006
+
2007
+
2008
+
2009
+
2010
+
2011
+
2012
+
2013
+
2014
+
2015
+
2016
+
2017
+
2018
+
2019
+
2020
+
2021
+
2022
+
2023
+
2024
+
2025
+
2026
+
2027
+
2028
+
2029
+
2030
+
2031
+
2032
+
2033
+
2034
+
2035
+
2036
+
2037
+
2038
+
2039
+
2040
+
2041
+
2042
+
2043
+
2044
+
2045
+
2046
+
2047
+
2048
+
2049
+
2050
+
2051
+
2052
+
2053
+
2054
+
2055
+
2056
+
2057
+
2058
+
2059
+
2060
+
2061
+
2062
+
2063
+
2064
+
2065
+
2066
+
2067
+
2068
+
2069
+
2070
+
2071
+
2072
+
2073
+
2074
+
2075
+
2076
+
2077
+
2078
+
2079
+
2080
+
2081
+
2082
+
2083
+
2084
+
2085
+
2086
+
2087
+
2088
+
2089
+
2090
+
2091
+
2092
+
2093
+
2094
+
2095
+
2096
+
2097
+
2098
+
2099
+
2100
+
2101
+
2102
+
2103
+
2104
+
2105
+
2106
+
2107
+
2108
+
2109
+
2110
+
2111
+
2112
+
2113
+
2114
+
2115
+
2116
+
2117
+
2118
+
2119
+
2120
+
2121
+
2122
+
2123
+
2124
+
2125
+
2126
+
2127
+
2128
+
2129
+
2130
+
2131
+
2132
+
2133
+
2134
+
2135
+
2136
+
2137
+
2138
+
2139
+
2140
+
2141
+
2142
+
2143
+
2144
+
2145
+
2146
+
2147
+
2148
+
2149
+
2150
+
2151
+
2152
+
2153
+
2154
+
2155
+
2156
+
2157
+
2158
+
2159
+
2160
+
2161
+
2162
+
2163
+
2164
+
2165
+
2166
+
2167
+
2168
+
2169
+
2170
+
2171
+
2172
+
2173
+
2174
+
2175
+
2176
+
2177
+
2178
+
2179
+
2180
+
2181
+
2182
+
2183
+
2184
+
2185
+
2186
+
2187
+
2188
+
2189
+
2190
+
2191
+
2192
+
2193
+
2194
+
2195
+
2196
+
2197
+
2198
+
2199
+
2200
+
2201
+
2202
+
2203
+
2204
+
2205
+
2206
+
2207
+
2208
+
2209
+
2210
+
2211
+
2212
+
2213
+
2214
+
2215
+
2216
+
2217
+
2218
+
2219
+
2220
+
2221
+
2222
+
2223
+
2224
+
2225
+
2226
+
2227
+
2228
+
2229
+
2230
+
2231
+
2232
+
2233
+
2234
+
2235
+
2236
+
2237
+
2238
+
2239
+
2240
+
2241
+
2242
+
2243
+
2244
+
2245
+
2246
+
2247
+
2248
+
2249
+
2250
+
2251
+
2252
+
2253
+
2254
+
2255
+
2256
+
2257
+
2258
+
2259
+
2260
+
2261
+
2262
+
2263
+
2264
+
2265
+
2266
+
2267
+
2268
+
2269
+
2270
+
2271
+
2272
+
2273
+
2274
+
2275
+
2276
+
2277
+
2278
+
2279
+
2280
+
2281
+
2282
+
2283
+
2284
+
2285
+
2286
+
2287
+
2288
+
2289
+
2290
+
2291
+
2292
+
2293
+
2294
+
2295
+
2296
+
2297
+
2298
+
2299
+
2300
+
2301
+
2302
+
2303
+
2304
+
2305
+
2306
+
2307
+
2308
+
2309
+
2310
+
2311
+
2312
+
2313
+
2314
+
2315
+
2316
+
2317
+
2318
+
2319
+
2320
+
2321
+
2322
+
2323
+
2324
+
2325
+
2326
+
2327
+
2328
+
2329
+
2330
+
2331
+
2332
+
2333
+
2334
+
2335
+
2336
+
2337
+
2338
+
2339
+
2340
+
2341
+
2342
+
2343
+
2344
+
2345
+
2346
+
2347
+
2348
+
2349
+
2350
+
2351
+
2352
+
2353
+
2354
+
2355
+
2356
+
2357
+
2358
+
2359
+
2360
+
2361
+
2362
+
2363
+
2364
+
2365
+
2366
+
2367
+
2368
+
2369
+
2370
+
2371
+
2372
+
2373
+
2374
+
2375
+
2376
+
2377
+
2378
+
2379
+
2380
+
2381
+
2382
+
2383
+
2384
+
2385
+
2386
+
2387
+
2388
+
2389
+
2390
+
2391
+
2392
+
2393
+
2394
+
2395
+
2396
+
2397
+
2398
+
2399
+
2400
+
2401
+
2402
+
2403
+
2404
+
2405
+
2406
+
2407
+
2408
+
2409
+
2410
+
2411
+
2412
+
2413
+
2414
+
2415
+
2416
+
2417
+
2418
+
2419
+
2420
+
2421
+
2422
+
2423
+
2424
+
2425
+
2426
+
2427
+
2428
+
2429
+
2430
+
2431
+
2432
+
2433
+
2434
+
2435
+
2436
+
2437
+
2438
+
2439
+
2440
+
2441
+
2442
+
2443
+
2444
+
2445
+
2446
+
2447
+
2448
+
2449
+
2450
+
2451
+
2452
+
2453
+
2454
+
2455
+
2456
+
2457
+
2458
+
2459
+
2460
+
2461
+
2462
+
2463
+
2464
+
2465
+
2466
+
2467
+
2468
+
2469
+
2470
+
2471
+
2472
+
2473
+
2474
+
2475
+
2476
+
2477
+
2478
+
2479
+
2480
+
2481
+
2482
+
2483
+
2484
+
2485
+
2486
+
2487
+
2488
+
2489
+
2490
+
2491
+
2492
+
2493
+
2494
+
2495
+
2496
+
2497
+
2498
+
2499
+
2500
+
2501
+
2502
+
2503
+
2504
+
2505
+
2506
+
2507
+
2508
+
2509
+
2510
+
2511
+
2512
+
2513
+
2514
+
2515
+
2516
+
2517
+
2518
+
2519
+
2520
+
2521
+
2522
+
2523
+
2524
+
2525
+
2526
+
2527
+
2528
+
2529
+
2530
+
2531
+
2532
+
2533
+
2534
+
2535
+
2536
+
2537
+
2538
+
2539
+
2540
+
2541
+
2542
+
2543
+
2544
+
2545
+ 𠮶
F5-TTS/data/librispeech_pc_test_clean_cross_sentence.lst ADDED
The diff for this file is too large to render. See raw diff
 
F5-TTS/data/v2c_test.lst ADDED
The diff for this file is too large to render. See raw diff
 
F5-TTS/data/v2c_test_s3.lst ADDED
The diff for this file is too large to render. See raw diff
 
F5-TTS/pyproject.toml ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [build-system]
2
+ requires = ["setuptools >= 61.0", "setuptools-scm>=8.0"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [project]
6
+ name = "f5-tts"
7
+ version = "0.5.2"
8
+ description = "F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching"
9
+ readme = "README.md"
10
+ license = {text = "MIT License"}
11
+ classifiers = [
12
+ "License :: OSI Approved :: MIT License",
13
+ "Operating System :: OS Independent",
14
+ "Programming Language :: Python :: 3",
15
+ ]
16
+ dependencies = [
17
+ "accelerate>=0.33.0",
18
+ "bitsandbytes>0.37.0; platform_machine != 'arm64' and platform_system != 'Darwin'",
19
+ "cached_path",
20
+ "click",
21
+ "datasets",
22
+ "ema_pytorch>=0.5.2",
23
+ "gradio>=3.45.2",
24
+ "hydra-core>=1.3.0",
25
+ "jieba",
26
+ "librosa",
27
+ "matplotlib",
28
+ "numpy<=1.26.4",
29
+ "pydub",
30
+ "pypinyin",
31
+ "safetensors",
32
+ "soundfile",
33
+ "tomli",
34
+ "torch>=2.0.0",
35
+ "torchaudio>=2.0.0",
36
+ "torchdiffeq",
37
+ "tqdm>=4.65.0",
38
+ "transformers",
39
+ "transformers_stream_generator",
40
+ "vocos",
41
+ "wandb",
42
+ "x_transformers>=1.31.14",
43
+ ]
44
+
45
+ [project.optional-dependencies]
46
+ eval = [
47
+ "faster_whisper==0.10.1",
48
+ "funasr",
49
+ "jiwer",
50
+ "modelscope",
51
+ "zhconv",
52
+ "zhon",
53
+ ]
54
+
55
+ [project.urls]
56
+ Homepage = "https://github.com/SWivid/F5-TTS"
57
+
58
+ [project.scripts]
59
+ "f5-tts_infer-cli" = "f5_tts.infer.infer_cli:main"
60
+ "f5-tts_infer-gradio" = "f5_tts.infer.infer_gradio:main"
61
+ "f5-tts_finetune-cli" = "f5_tts.train.finetune_cli:main"
62
+ "f5-tts_finetune-gradio" = "f5_tts.train.finetune_gradio:main"
F5-TTS/ruff.toml ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ line-length = 120
2
+ target-version = "py310"
3
+
4
+ [lint]
5
+ # Only ignore variables with names starting with "_".
6
+ dummy-variable-rgx = "^_.*$"
7
+
8
+ [lint.isort]
9
+ force-single-line = true
10
+ lines-after-imports = 2
F5-TTS/src/f5_tts/api.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import sys
3
+ from importlib.resources import files
4
+
5
+ import soundfile as sf
6
+ import tqdm
7
+ from cached_path import cached_path
8
+
9
+ from f5_tts.infer.utils_infer import (
10
+ hop_length,
11
+ infer_process,
12
+ load_model,
13
+ load_vocoder,
14
+ preprocess_ref_audio_text,
15
+ remove_silence_for_generated_wav,
16
+ save_spectrogram,
17
+ transcribe,
18
+ target_sample_rate,
19
+ )
20
+ from f5_tts.model import DiT, UNetT
21
+ from f5_tts.model.utils import seed_everything
22
+
23
+
24
+ class F5TTS:
25
+ def __init__(
26
+ self,
27
+ model_type="F5-TTS",
28
+ ckpt_file="",
29
+ vocab_file="",
30
+ ode_method="euler",
31
+ use_ema=True,
32
+ vocoder_name="vocos",
33
+ local_path=None,
34
+ device=None,
35
+ hf_cache_dir=None,
36
+ ):
37
+ # Initialize parameters
38
+ self.final_wave = None
39
+ self.target_sample_rate = target_sample_rate
40
+ self.hop_length = hop_length
41
+ self.seed = -1
42
+ self.mel_spec_type = vocoder_name
43
+
44
+ # Set device
45
+ if device is not None:
46
+ self.device = device
47
+ else:
48
+ import torch
49
+
50
+ self.device = (
51
+ "cuda"
52
+ if torch.cuda.is_available()
53
+ else "xpu"
54
+ if torch.xpu.is_available()
55
+ else "mps"
56
+ if torch.backends.mps.is_available()
57
+ else "cpu"
58
+ )
59
+
60
+ # Load models
61
+ self.load_vocoder_model(vocoder_name, local_path=local_path, hf_cache_dir=hf_cache_dir)
62
+ self.load_ema_model(
63
+ model_type, ckpt_file, vocoder_name, vocab_file, ode_method, use_ema, hf_cache_dir=hf_cache_dir
64
+ )
65
+
66
+ def load_vocoder_model(self, vocoder_name, local_path=None, hf_cache_dir=None):
67
+ self.vocoder = load_vocoder(vocoder_name, local_path is not None, local_path, self.device, hf_cache_dir)
68
+
69
+ def load_ema_model(self, model_type, ckpt_file, mel_spec_type, vocab_file, ode_method, use_ema, hf_cache_dir=None):
70
+ if model_type == "F5-TTS":
71
+ if not ckpt_file:
72
+ if mel_spec_type == "vocos":
73
+ ckpt_file = str(
74
+ cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors", cache_dir=hf_cache_dir)
75
+ )
76
+ elif mel_spec_type == "bigvgan":
77
+ ckpt_file = str(
78
+ cached_path("hf://SWivid/F5-TTS/F5TTS_Base_bigvgan/model_1250000.pt", cache_dir=hf_cache_dir)
79
+ )
80
+ model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
81
+ model_cls = DiT
82
+ elif model_type == "E2-TTS":
83
+ if not ckpt_file:
84
+ ckpt_file = str(
85
+ cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors", cache_dir=hf_cache_dir)
86
+ )
87
+ model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
88
+ model_cls = UNetT
89
+ else:
90
+ raise ValueError(f"Unknown model type: {model_type}")
91
+
92
+ self.ema_model = load_model(
93
+ model_cls, model_cfg, ckpt_file, mel_spec_type, vocab_file, ode_method, use_ema, self.device
94
+ )
95
+
96
+ def transcribe(self, ref_audio, language=None):
97
+ return transcribe(ref_audio, language)
98
+
99
+ def export_wav(self, wav, file_wave, remove_silence=False):
100
+ sf.write(file_wave, wav, self.target_sample_rate)
101
+
102
+ if remove_silence:
103
+ remove_silence_for_generated_wav(file_wave)
104
+
105
+ def export_spectrogram(self, spect, file_spect):
106
+ save_spectrogram(spect, file_spect)
107
+
108
+ def infer(
109
+ self,
110
+ ref_file,
111
+ ref_text,
112
+ gen_text,
113
+ show_info=print,
114
+ progress=tqdm,
115
+ target_rms=0.1,
116
+ cross_fade_duration=0.15,
117
+ sway_sampling_coef=-1,
118
+ cfg_strength=2,
119
+ nfe_step=32,
120
+ speed=1.0,
121
+ fix_duration=None,
122
+ remove_silence=False,
123
+ file_wave=None,
124
+ file_spect=None,
125
+ seed=-1,
126
+ ):
127
+ if seed == -1:
128
+ seed = random.randint(0, sys.maxsize)
129
+ seed_everything(seed)
130
+ self.seed = seed
131
+
132
+ ref_file, ref_text = preprocess_ref_audio_text(ref_file, ref_text, device=self.device)
133
+
134
+ wav, sr, spect = infer_process(
135
+ ref_file,
136
+ ref_text,
137
+ gen_text,
138
+ self.ema_model,
139
+ self.vocoder,
140
+ self.mel_spec_type,
141
+ show_info=show_info,
142
+ progress=progress,
143
+ target_rms=target_rms,
144
+ cross_fade_duration=cross_fade_duration,
145
+ nfe_step=nfe_step,
146
+ cfg_strength=cfg_strength,
147
+ sway_sampling_coef=sway_sampling_coef,
148
+ speed=speed,
149
+ fix_duration=fix_duration,
150
+ device=self.device,
151
+ )
152
+
153
+ if file_wave is not None:
154
+ self.export_wav(wav, file_wave, remove_silence)
155
+
156
+ if file_spect is not None:
157
+ self.export_spectrogram(spect, file_spect)
158
+
159
+ return wav, sr, spect
160
+
161
+
162
+ if __name__ == "__main__":
163
+ f5tts = F5TTS()
164
+
165
+ wav, sr, spect = f5tts.infer(
166
+ ref_file=str(files("f5_tts").joinpath("infer/examples/basic/basic_ref_en.wav")),
167
+ ref_text="some call me nature, others call me mother nature.",
168
+ gen_text="""I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences.""",
169
+ file_wave=str(files("f5_tts").joinpath("../../tests/api_out.wav")),
170
+ file_spect=str(files("f5_tts").joinpath("../../tests/api_out.png")),
171
+ seed=-1, # random seed = -1
172
+ )
173
+
174
+ print("seed :", f5tts.seed)
F5-TTS/src/f5_tts/configs/E2TTS_Base_train.yaml ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
4
+
5
+ datasets:
6
+ name: Emilia_ZH_EN # dataset name
7
+ batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
8
+ batch_size_type: frame # "frame" or "sample"
9
+ max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
10
+ num_workers: 16
11
+
12
+ optim:
13
+ epochs: 15
14
+ learning_rate: 7.5e-5
15
+ num_warmup_updates: 20000 # warmup updates
16
+ grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
17
+ max_grad_norm: 1.0 # gradient clipping
18
+ bnb_optimizer: False # use bnb 8bit AdamW optimizer or not
19
+
20
+ model:
21
+ name: E2TTS_Base
22
+ tokenizer: pinyin
23
+ tokenizer_path: None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
24
+ arch:
25
+ dim: 1024
26
+ depth: 24
27
+ heads: 16
28
+ ff_mult: 4
29
+ mel_spec:
30
+ target_sample_rate: 24000
31
+ n_mel_channels: 100
32
+ hop_length: 256
33
+ win_length: 1024
34
+ n_fft: 1024
35
+ mel_spec_type: vocos # 'vocos' or 'bigvgan'
36
+ vocoder:
37
+ is_local: False # use local offline ckpt or not
38
+ local_path: None # local vocoder path
39
+
40
+ ckpts:
41
+ logger: wandb # wandb | tensorboard | None
42
+ save_per_updates: 50000 # save checkpoint per updates
43
+ keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
44
+ last_per_updates: 5000 # save last checkpoint per updates
45
+ save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}
F5-TTS/src/f5_tts/configs/E2TTS_Small_train.yaml ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
4
+
5
+ datasets:
6
+ name: Emilia_ZH_EN
7
+ batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
8
+ batch_size_type: frame # "frame" or "sample"
9
+ max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
10
+ num_workers: 16
11
+
12
+ optim:
13
+ epochs: 15
14
+ learning_rate: 7.5e-5
15
+ num_warmup_updates: 20000 # warmup updates
16
+ grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
17
+ max_grad_norm: 1.0
18
+ bnb_optimizer: False
19
+
20
+ model:
21
+ name: E2TTS_Small
22
+ tokenizer: pinyin
23
+ tokenizer_path: None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
24
+ arch:
25
+ dim: 768
26
+ depth: 20
27
+ heads: 12
28
+ ff_mult: 4
29
+ mel_spec:
30
+ target_sample_rate: 24000
31
+ n_mel_channels: 100
32
+ hop_length: 256
33
+ win_length: 1024
34
+ n_fft: 1024
35
+ mel_spec_type: vocos # 'vocos' or 'bigvgan'
36
+ vocoder:
37
+ is_local: False # use local offline ckpt or not
38
+ local_path: None # local vocoder path
39
+
40
+ ckpts:
41
+ logger: wandb # wandb | tensorboard | None
42
+ save_per_updates: 50000 # save checkpoint per updates
43
+ keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
44
+ last_per_updates: 5000 # save last checkpoint per updates
45
+ save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}
F5-TTS/src/f5_tts/configs/F5TTS_Base_train.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
4
+
5
+ datasets:
6
+ name: Emilia_ZH_EN # dataset name
7
+ batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
8
+ batch_size_type: frame # "frame" or "sample"
9
+ max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
10
+ num_workers: 16
11
+
12
+ optim:
13
+ epochs: 15
14
+ learning_rate: 7.5e-5
15
+ num_warmup_updates: 20000 # warmup updates
16
+ grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
17
+ max_grad_norm: 1.0 # gradient clipping
18
+ bnb_optimizer: False # use bnb 8bit AdamW optimizer or not
19
+
20
+ model:
21
+ name: F5TTS_Base # model name
22
+ tokenizer: pinyin # tokenizer type
23
+ tokenizer_path: None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
24
+ arch:
25
+ dim: 1024
26
+ depth: 22
27
+ heads: 16
28
+ ff_mult: 2
29
+ text_dim: 512
30
+ conv_layers: 4
31
+ checkpoint_activations: False # recompute activations and save memory for extra compute
32
+ mel_spec:
33
+ target_sample_rate: 24000
34
+ n_mel_channels: 100
35
+ hop_length: 256
36
+ win_length: 1024
37
+ n_fft: 1024
38
+ mel_spec_type: vocos # 'vocos' or 'bigvgan'
39
+ vocoder:
40
+ is_local: False # use local offline ckpt or not
41
+ local_path: None # local vocoder path
42
+
43
+ ckpts:
44
+ logger: wandb # wandb | tensorboard | None
45
+ save_per_updates: 50000 # save checkpoint per updates
46
+ keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
47
+ last_per_updates: 5000 # save last checkpoint per updates
48
+ save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}
F5-TTS/src/f5_tts/configs/F5TTS_Small_train.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
4
+
5
+ datasets:
6
+ name: Emilia_ZH_EN
7
+ batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
8
+ batch_size_type: frame # "frame" or "sample"
9
+ max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
10
+ num_workers: 16
11
+
12
+ optim:
13
+ epochs: 15
14
+ learning_rate: 7.5e-5
15
+ num_warmup_updates: 20000 # warmup updates
16
+ grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
17
+ max_grad_norm: 1.0 # gradient clipping
18
+ bnb_optimizer: False # use bnb 8bit AdamW optimizer or not
19
+
20
+ model:
21
+ name: F5TTS_Small
22
+ tokenizer: pinyin
23
+ tokenizer_path: None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
24
+ arch:
25
+ dim: 768
26
+ depth: 18
27
+ heads: 12
28
+ ff_mult: 2
29
+ text_dim: 512
30
+ conv_layers: 4
31
+ checkpoint_activations: False # recompute activations and save memory for extra compute
32
+ mel_spec:
33
+ target_sample_rate: 24000
34
+ n_mel_channels: 100
35
+ hop_length: 256
36
+ win_length: 1024
37
+ n_fft: 1024
38
+ mel_spec_type: vocos # 'vocos' or 'bigvgan'
39
+ vocoder:
40
+ is_local: False # use local offline ckpt or not
41
+ local_path: None # local vocoder path
42
+
43
+ ckpts:
44
+ logger: wandb # wandb | tensorboard | None
45
+ save_per_updates: 50000 # save checkpoint per updates
46
+ keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
47
+ last_per_updates: 5000 # save last checkpoint per updates
48
+ save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}
F5-TTS/src/f5_tts/eval/README.md ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # Evaluation
3
+
4
+ Install packages for evaluation:
5
+
6
+ ```bash
7
+ pip install -e .[eval]
8
+ ```
9
+
10
+ ## Generating Samples for Evaluation
11
+
12
+ ### Prepare Test Datasets
13
+
14
+ 1. *Seed-TTS testset*: Download from [seed-tts-eval](https://github.com/BytedanceSpeech/seed-tts-eval).
15
+ 2. *LibriSpeech test-clean*: Download from [OpenSLR](http://www.openslr.org/12/).
16
+ 3. Unzip the downloaded datasets and place them in the `data/` directory.
17
+ 4. Update the path for *LibriSpeech test-clean* data in `src/f5_tts/eval/eval_infer_batch.py`
18
+ 5. Our filtered LibriSpeech-PC 4-10s subset: `data/librispeech_pc_test_clean_cross_sentence.lst`
19
+
20
+ ### Batch Inference for Test Set
21
+
22
+ To run batch inference for evaluations, execute the following commands:
23
+
24
+ ```bash
25
+ # batch inference for evaluations
26
+ accelerate config # if not set before
27
+ bash src/f5_tts/eval/eval_infer_batch.sh
28
+ ```
29
+
30
+ ## Objective Evaluation on Generated Results
31
+
32
+ ### Download Evaluation Model Checkpoints
33
+
34
+ 1. Chinese ASR Model: [Paraformer-zh](https://huggingface.co/funasr/paraformer-zh)
35
+ 2. English ASR Model: [Faster-Whisper](https://huggingface.co/Systran/faster-whisper-large-v3)
36
+ 3. WavLM Model: Download from [Google Drive](https://drive.google.com/file/d/1-aE1NfzpRCLxA4GUxX9ITI3F9LlbtEGP/view).
37
+
38
+ Then update in the following scripts with the paths you put evaluation model ckpts to.
39
+
40
+ ### Objective Evaluation
41
+
42
+ Update the path with your batch-inferenced results, and carry out WER / SIM / UTMOS evaluations:
43
+ ```bash
44
+ # Evaluation [WER] for Seed-TTS test [ZH] set
45
+ python src/f5_tts/eval/eval_seedtts_testset.py --eval_task wer --lang zh --gen_wav_dir <GEN_WAV_DIR> --gpu_nums 8
46
+
47
+ # Evaluation [SIM] for LibriSpeech-PC test-clean (cross-sentence)
48
+ python src/f5_tts/eval/eval_librispeech_test_clean.py --eval_task sim --gen_wav_dir <GEN_WAV_DIR> --librispeech_test_clean_path <TEST_CLEAN_PATH>
49
+
50
+ # Evaluation [UTMOS]. --ext: Audio extension
51
+ python src/f5_tts/eval/eval_utmos.py --audio_dir <WAV_DIR> --ext wav
52
+ ```
F5-TTS/src/f5_tts/eval/ecapa_tdnn.py ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # just for speaker similarity evaluation, third-party code
2
+
3
+ # From https://github.com/microsoft/UniSpeech/blob/main/downstreams/speaker_verification/models/
4
+ # part of the code is borrowed from https://github.com/lawlict/ECAPA-TDNN
5
+
6
+ import os
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+
11
+
12
+ """ Res2Conv1d + BatchNorm1d + ReLU
13
+ """
14
+
15
+
16
+ class Res2Conv1dReluBn(nn.Module):
17
+ """
18
+ in_channels == out_channels == channels
19
+ """
20
+
21
+ def __init__(self, channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True, scale=4):
22
+ super().__init__()
23
+ assert channels % scale == 0, "{} % {} != 0".format(channels, scale)
24
+ self.scale = scale
25
+ self.width = channels // scale
26
+ self.nums = scale if scale == 1 else scale - 1
27
+
28
+ self.convs = []
29
+ self.bns = []
30
+ for i in range(self.nums):
31
+ self.convs.append(nn.Conv1d(self.width, self.width, kernel_size, stride, padding, dilation, bias=bias))
32
+ self.bns.append(nn.BatchNorm1d(self.width))
33
+ self.convs = nn.ModuleList(self.convs)
34
+ self.bns = nn.ModuleList(self.bns)
35
+
36
+ def forward(self, x):
37
+ out = []
38
+ spx = torch.split(x, self.width, 1)
39
+ for i in range(self.nums):
40
+ if i == 0:
41
+ sp = spx[i]
42
+ else:
43
+ sp = sp + spx[i]
44
+ # Order: conv -> relu -> bn
45
+ sp = self.convs[i](sp)
46
+ sp = self.bns[i](F.relu(sp))
47
+ out.append(sp)
48
+ if self.scale != 1:
49
+ out.append(spx[self.nums])
50
+ out = torch.cat(out, dim=1)
51
+
52
+ return out
53
+
54
+
55
+ """ Conv1d + BatchNorm1d + ReLU
56
+ """
57
+
58
+
59
+ class Conv1dReluBn(nn.Module):
60
+ def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True):
61
+ super().__init__()
62
+ self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias)
63
+ self.bn = nn.BatchNorm1d(out_channels)
64
+
65
+ def forward(self, x):
66
+ return self.bn(F.relu(self.conv(x)))
67
+
68
+
69
+ """ The SE connection of 1D case.
70
+ """
71
+
72
+
73
+ class SE_Connect(nn.Module):
74
+ def __init__(self, channels, se_bottleneck_dim=128):
75
+ super().__init__()
76
+ self.linear1 = nn.Linear(channels, se_bottleneck_dim)
77
+ self.linear2 = nn.Linear(se_bottleneck_dim, channels)
78
+
79
+ def forward(self, x):
80
+ out = x.mean(dim=2)
81
+ out = F.relu(self.linear1(out))
82
+ out = torch.sigmoid(self.linear2(out))
83
+ out = x * out.unsqueeze(2)
84
+
85
+ return out
86
+
87
+
88
+ """ SE-Res2Block of the ECAPA-TDNN architecture.
89
+ """
90
+
91
+ # def SE_Res2Block(channels, kernel_size, stride, padding, dilation, scale):
92
+ # return nn.Sequential(
93
+ # Conv1dReluBn(channels, 512, kernel_size=1, stride=1, padding=0),
94
+ # Res2Conv1dReluBn(512, kernel_size, stride, padding, dilation, scale=scale),
95
+ # Conv1dReluBn(512, channels, kernel_size=1, stride=1, padding=0),
96
+ # SE_Connect(channels)
97
+ # )
98
+
99
+
100
+ class SE_Res2Block(nn.Module):
101
+ def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, scale, se_bottleneck_dim):
102
+ super().__init__()
103
+ self.Conv1dReluBn1 = Conv1dReluBn(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
104
+ self.Res2Conv1dReluBn = Res2Conv1dReluBn(out_channels, kernel_size, stride, padding, dilation, scale=scale)
105
+ self.Conv1dReluBn2 = Conv1dReluBn(out_channels, out_channels, kernel_size=1, stride=1, padding=0)
106
+ self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim)
107
+
108
+ self.shortcut = None
109
+ if in_channels != out_channels:
110
+ self.shortcut = nn.Conv1d(
111
+ in_channels=in_channels,
112
+ out_channels=out_channels,
113
+ kernel_size=1,
114
+ )
115
+
116
+ def forward(self, x):
117
+ residual = x
118
+ if self.shortcut:
119
+ residual = self.shortcut(x)
120
+
121
+ x = self.Conv1dReluBn1(x)
122
+ x = self.Res2Conv1dReluBn(x)
123
+ x = self.Conv1dReluBn2(x)
124
+ x = self.SE_Connect(x)
125
+
126
+ return x + residual
127
+
128
+
129
+ """ Attentive weighted mean and standard deviation pooling.
130
+ """
131
+
132
+
133
+ class AttentiveStatsPool(nn.Module):
134
+ def __init__(self, in_dim, attention_channels=128, global_context_att=False):
135
+ super().__init__()
136
+ self.global_context_att = global_context_att
137
+
138
+ # Use Conv1d with stride == 1 rather than Linear, then we don't need to transpose inputs.
139
+ if global_context_att:
140
+ self.linear1 = nn.Conv1d(in_dim * 3, attention_channels, kernel_size=1) # equals W and b in the paper
141
+ else:
142
+ self.linear1 = nn.Conv1d(in_dim, attention_channels, kernel_size=1) # equals W and b in the paper
143
+ self.linear2 = nn.Conv1d(attention_channels, in_dim, kernel_size=1) # equals V and k in the paper
144
+
145
+ def forward(self, x):
146
+ if self.global_context_att:
147
+ context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x)
148
+ context_std = torch.sqrt(torch.var(x, dim=-1, keepdim=True) + 1e-10).expand_as(x)
149
+ x_in = torch.cat((x, context_mean, context_std), dim=1)
150
+ else:
151
+ x_in = x
152
+
153
+ # DON'T use ReLU here! In experiments, I find ReLU hard to converge.
154
+ alpha = torch.tanh(self.linear1(x_in))
155
+ # alpha = F.relu(self.linear1(x_in))
156
+ alpha = torch.softmax(self.linear2(alpha), dim=2)
157
+ mean = torch.sum(alpha * x, dim=2)
158
+ residuals = torch.sum(alpha * (x**2), dim=2) - mean**2
159
+ std = torch.sqrt(residuals.clamp(min=1e-9))
160
+ return torch.cat([mean, std], dim=1)
161
+
162
+
163
+ class ECAPA_TDNN(nn.Module):
164
+ def __init__(
165
+ self,
166
+ feat_dim=80,
167
+ channels=512,
168
+ emb_dim=192,
169
+ global_context_att=False,
170
+ feat_type="wavlm_large",
171
+ sr=16000,
172
+ feature_selection="hidden_states",
173
+ update_extract=False,
174
+ config_path=None,
175
+ ):
176
+ super().__init__()
177
+
178
+ self.feat_type = feat_type
179
+ self.feature_selection = feature_selection
180
+ self.update_extract = update_extract
181
+ self.sr = sr
182
+
183
+ torch.hub._validate_not_a_forked_repo = lambda a, b, c: True
184
+ try:
185
+ local_s3prl_path = os.path.expanduser("~/.cache/torch/hub/s3prl_s3prl_main")
186
+ self.feature_extract = torch.hub.load(local_s3prl_path, feat_type, source="local", config_path=config_path)
187
+ except: # noqa: E722
188
+ self.feature_extract = torch.hub.load("s3prl/s3prl", feat_type)
189
+
190
+ if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(
191
+ self.feature_extract.model.encoder.layers[23].self_attn, "fp32_attention"
192
+ ):
193
+ self.feature_extract.model.encoder.layers[23].self_attn.fp32_attention = False
194
+ if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(
195
+ self.feature_extract.model.encoder.layers[11].self_attn, "fp32_attention"
196
+ ):
197
+ self.feature_extract.model.encoder.layers[11].self_attn.fp32_attention = False
198
+
199
+ self.feat_num = self.get_feat_num()
200
+ self.feature_weight = nn.Parameter(torch.zeros(self.feat_num))
201
+
202
+ if feat_type != "fbank" and feat_type != "mfcc":
203
+ freeze_list = ["final_proj", "label_embs_concat", "mask_emb", "project_q", "quantizer"]
204
+ for name, param in self.feature_extract.named_parameters():
205
+ for freeze_val in freeze_list:
206
+ if freeze_val in name:
207
+ param.requires_grad = False
208
+ break
209
+
210
+ if not self.update_extract:
211
+ for param in self.feature_extract.parameters():
212
+ param.requires_grad = False
213
+
214
+ self.instance_norm = nn.InstanceNorm1d(feat_dim)
215
+ # self.channels = [channels] * 4 + [channels * 3]
216
+ self.channels = [channels] * 4 + [1536]
217
+
218
+ self.layer1 = Conv1dReluBn(feat_dim, self.channels[0], kernel_size=5, padding=2)
219
+ self.layer2 = SE_Res2Block(
220
+ self.channels[0],
221
+ self.channels[1],
222
+ kernel_size=3,
223
+ stride=1,
224
+ padding=2,
225
+ dilation=2,
226
+ scale=8,
227
+ se_bottleneck_dim=128,
228
+ )
229
+ self.layer3 = SE_Res2Block(
230
+ self.channels[1],
231
+ self.channels[2],
232
+ kernel_size=3,
233
+ stride=1,
234
+ padding=3,
235
+ dilation=3,
236
+ scale=8,
237
+ se_bottleneck_dim=128,
238
+ )
239
+ self.layer4 = SE_Res2Block(
240
+ self.channels[2],
241
+ self.channels[3],
242
+ kernel_size=3,
243
+ stride=1,
244
+ padding=4,
245
+ dilation=4,
246
+ scale=8,
247
+ se_bottleneck_dim=128,
248
+ )
249
+
250
+ # self.conv = nn.Conv1d(self.channels[-1], self.channels[-1], kernel_size=1)
251
+ cat_channels = channels * 3
252
+ self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1)
253
+ self.pooling = AttentiveStatsPool(
254
+ self.channels[-1], attention_channels=128, global_context_att=global_context_att
255
+ )
256
+ self.bn = nn.BatchNorm1d(self.channels[-1] * 2)
257
+ self.linear = nn.Linear(self.channels[-1] * 2, emb_dim)
258
+
259
+ def get_feat_num(self):
260
+ self.feature_extract.eval()
261
+ wav = [torch.randn(self.sr).to(next(self.feature_extract.parameters()).device)]
262
+ with torch.no_grad():
263
+ features = self.feature_extract(wav)
264
+ select_feature = features[self.feature_selection]
265
+ if isinstance(select_feature, (list, tuple)):
266
+ return len(select_feature)
267
+ else:
268
+ return 1
269
+
270
+ def get_feat(self, x):
271
+ if self.update_extract:
272
+ x = self.feature_extract([sample for sample in x])
273
+ else:
274
+ with torch.no_grad():
275
+ if self.feat_type == "fbank" or self.feat_type == "mfcc":
276
+ x = self.feature_extract(x) + 1e-6 # B x feat_dim x time_len
277
+ else:
278
+ x = self.feature_extract([sample for sample in x])
279
+
280
+ if self.feat_type == "fbank":
281
+ x = x.log()
282
+
283
+ if self.feat_type != "fbank" and self.feat_type != "mfcc":
284
+ x = x[self.feature_selection]
285
+ if isinstance(x, (list, tuple)):
286
+ x = torch.stack(x, dim=0)
287
+ else:
288
+ x = x.unsqueeze(0)
289
+ norm_weights = F.softmax(self.feature_weight, dim=-1).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
290
+ x = (norm_weights * x).sum(dim=0)
291
+ x = torch.transpose(x, 1, 2) + 1e-6
292
+
293
+ x = self.instance_norm(x)
294
+ return x
295
+
296
+ def forward(self, x):
297
+ x = self.get_feat(x)
298
+
299
+ out1 = self.layer1(x)
300
+ out2 = self.layer2(out1)
301
+ out3 = self.layer3(out2)
302
+ out4 = self.layer4(out3)
303
+
304
+ out = torch.cat([out2, out3, out4], dim=1)
305
+ out = F.relu(self.conv(out))
306
+ out = self.bn(self.pooling(out))
307
+ out = self.linear(out)
308
+
309
+ return out
310
+
311
+
312
+ def ECAPA_TDNN_SMALL(
313
+ feat_dim,
314
+ emb_dim=256,
315
+ feat_type="wavlm_large",
316
+ sr=16000,
317
+ feature_selection="hidden_states",
318
+ update_extract=False,
319
+ config_path=None,
320
+ ):
321
+ return ECAPA_TDNN(
322
+ feat_dim=feat_dim,
323
+ channels=512,
324
+ emb_dim=emb_dim,
325
+ feat_type=feat_type,
326
+ sr=sr,
327
+ feature_selection=feature_selection,
328
+ update_extract=update_extract,
329
+ config_path=config_path,
330
+ )
F5-TTS/src/f5_tts/eval/eval_infer_batch.py ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+
4
+ sys.path.append(os.getcwd())
5
+
6
+ import argparse
7
+ import time
8
+ from importlib.resources import files
9
+
10
+ import torch
11
+ import torchaudio
12
+ from accelerate import Accelerator
13
+ from tqdm import tqdm
14
+
15
+ from f5_tts.eval.utils_eval import (
16
+ get_inference_prompt,
17
+ get_librispeech_test_clean_metainfo,
18
+ get_seedtts_testset_metainfo,
19
+ )
20
+ from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder
21
+ from f5_tts.model import CFM, DiT, UNetT
22
+ from f5_tts.model.utils import get_tokenizer
23
+
24
+ accelerator = Accelerator()
25
+ device = f"cuda:{accelerator.process_index}"
26
+
27
+
28
+ # --------------------- Dataset Settings -------------------- #
29
+
30
+ target_sample_rate = 24000
31
+ n_mel_channels = 100
32
+ hop_length = 256
33
+ win_length = 1024
34
+ n_fft = 1024
35
+ target_rms = 0.1
36
+
37
+ rel_path = str(files("f5_tts").joinpath("../../"))
38
+
39
+
40
+ def main():
41
+ # ---------------------- infer setting ---------------------- #
42
+
43
+ parser = argparse.ArgumentParser(description="batch inference")
44
+
45
+ parser.add_argument("-s", "--seed", default=None, type=int)
46
+ parser.add_argument("-d", "--dataset", default="Emilia_ZH_EN")
47
+ parser.add_argument("-n", "--expname", required=True)
48
+ parser.add_argument("-c", "--ckptstep", default=1200000, type=int)
49
+ parser.add_argument("-m", "--mel_spec_type", default="vocos", type=str, choices=["bigvgan", "vocos"])
50
+ parser.add_argument("-to", "--tokenizer", default="pinyin", type=str, choices=["pinyin", "char"])
51
+
52
+ parser.add_argument("-nfe", "--nfestep", default=32, type=int)
53
+ parser.add_argument("-o", "--odemethod", default="euler")
54
+ parser.add_argument("-ss", "--swaysampling", default=-1, type=float)
55
+
56
+ parser.add_argument("-t", "--testset", required=True)
57
+
58
+ args = parser.parse_args()
59
+
60
+ seed = args.seed
61
+ dataset_name = args.dataset
62
+ exp_name = args.expname
63
+ ckpt_step = args.ckptstep
64
+ ckpt_path = rel_path + f"/ckpts/{exp_name}/model_{ckpt_step}.pt"
65
+ mel_spec_type = args.mel_spec_type
66
+ tokenizer = args.tokenizer
67
+
68
+ nfe_step = args.nfestep
69
+ ode_method = args.odemethod
70
+ sway_sampling_coef = args.swaysampling
71
+
72
+ testset = args.testset
73
+
74
+ infer_batch_size = 1 # max frames. 1 for ddp single inference (recommended)
75
+ cfg_strength = 2.0
76
+ speed = 1.0
77
+ use_truth_duration = False
78
+ no_ref_audio = False
79
+
80
+ if exp_name == "F5TTS_Base":
81
+ model_cls = DiT
82
+ model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
83
+
84
+ elif exp_name == "E2TTS_Base":
85
+ model_cls = UNetT
86
+ model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
87
+
88
+ if testset == "ls_pc_test_clean":
89
+ metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst"
90
+ librispeech_test_clean_path = "<SOME_PATH>/LibriSpeech/test-clean" # test-clean path
91
+ metainfo = get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path)
92
+
93
+ elif testset == "seedtts_test_zh":
94
+ metalst = rel_path + "/data/seedtts_testset/zh/meta.lst"
95
+ metainfo = get_seedtts_testset_metainfo(metalst)
96
+
97
+ elif testset == "seedtts_test_en":
98
+ metalst = rel_path + "/data/seedtts_testset/en/meta.lst"
99
+ metainfo = get_seedtts_testset_metainfo(metalst)
100
+
101
+ # path to save genereted wavs
102
+ output_dir = (
103
+ f"{rel_path}/"
104
+ f"results/{exp_name}_{ckpt_step}/{testset}/"
105
+ f"seed{seed}_{ode_method}_nfe{nfe_step}_{mel_spec_type}"
106
+ f"{f'_ss{sway_sampling_coef}' if sway_sampling_coef else ''}"
107
+ f"_cfg{cfg_strength}_speed{speed}"
108
+ f"{'_gt-dur' if use_truth_duration else ''}"
109
+ f"{'_no-ref-audio' if no_ref_audio else ''}"
110
+ )
111
+
112
+ # -------------------------------------------------#
113
+
114
+ use_ema = True
115
+
116
+ prompts_all = get_inference_prompt(
117
+ metainfo,
118
+ speed=speed,
119
+ tokenizer=tokenizer,
120
+ target_sample_rate=target_sample_rate,
121
+ n_mel_channels=n_mel_channels,
122
+ hop_length=hop_length,
123
+ mel_spec_type=mel_spec_type,
124
+ target_rms=target_rms,
125
+ use_truth_duration=use_truth_duration,
126
+ infer_batch_size=infer_batch_size,
127
+ )
128
+
129
+ # Vocoder model
130
+ local = False
131
+ if mel_spec_type == "vocos":
132
+ vocoder_local_path = "../checkpoints/charactr/vocos-mel-24khz"
133
+ elif mel_spec_type == "bigvgan":
134
+ vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
135
+ vocoder = load_vocoder(vocoder_name=mel_spec_type, is_local=local, local_path=vocoder_local_path)
136
+
137
+ # Tokenizer
138
+ vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
139
+
140
+ # Model
141
+ model = CFM(
142
+ transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
143
+ mel_spec_kwargs=dict(
144
+ n_fft=n_fft,
145
+ hop_length=hop_length,
146
+ win_length=win_length,
147
+ n_mel_channels=n_mel_channels,
148
+ target_sample_rate=target_sample_rate,
149
+ mel_spec_type=mel_spec_type,
150
+ ),
151
+ odeint_kwargs=dict(
152
+ method=ode_method,
153
+ ),
154
+ vocab_char_map=vocab_char_map,
155
+ ).to(device)
156
+
157
+ dtype = torch.float32 if mel_spec_type == "bigvgan" else None
158
+ model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema)
159
+
160
+ if not os.path.exists(output_dir) and accelerator.is_main_process:
161
+ os.makedirs(output_dir)
162
+
163
+ # start batch inference
164
+ accelerator.wait_for_everyone()
165
+ start = time.time()
166
+
167
+ with accelerator.split_between_processes(prompts_all) as prompts:
168
+ for prompt in tqdm(prompts, disable=not accelerator.is_local_main_process):
169
+ utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = prompt
170
+ ref_mels = ref_mels.to(device)
171
+ ref_mel_lens = torch.tensor(ref_mel_lens, dtype=torch.long).to(device)
172
+ total_mel_lens = torch.tensor(total_mel_lens, dtype=torch.long).to(device)
173
+
174
+ # Inference
175
+ with torch.inference_mode():
176
+ generated, _ = model.sample(
177
+ cond=ref_mels,
178
+ text=final_text_list,
179
+ duration=total_mel_lens,
180
+ lens=ref_mel_lens,
181
+ steps=nfe_step,
182
+ cfg_strength=cfg_strength,
183
+ sway_sampling_coef=sway_sampling_coef,
184
+ no_ref_audio=no_ref_audio,
185
+ seed=seed,
186
+ )
187
+ # Final result
188
+ for i, gen in enumerate(generated):
189
+ gen = gen[ref_mel_lens[i] : total_mel_lens[i], :].unsqueeze(0)
190
+ gen_mel_spec = gen.permute(0, 2, 1).to(torch.float32)
191
+ if mel_spec_type == "vocos":
192
+ generated_wave = vocoder.decode(gen_mel_spec).cpu()
193
+ elif mel_spec_type == "bigvgan":
194
+ generated_wave = vocoder(gen_mel_spec).squeeze(0).cpu()
195
+
196
+ if ref_rms_list[i] < target_rms:
197
+ generated_wave = generated_wave * ref_rms_list[i] / target_rms
198
+ torchaudio.save(f"{output_dir}/{utts[i]}.wav", generated_wave, target_sample_rate)
199
+
200
+ accelerator.wait_for_everyone()
201
+ if accelerator.is_main_process:
202
+ timediff = time.time() - start
203
+ print(f"Done batch inference in {timediff / 60 :.2f} minutes.")
204
+
205
+
206
+ if __name__ == "__main__":
207
+ main()
F5-TTS/src/f5_tts/eval/eval_infer_batch.sh ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # e.g. F5-TTS, 16 NFE
4
+ accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "F5TTS_Base" -t "seedtts_test_zh" -nfe 16
5
+ accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "F5TTS_Base" -t "seedtts_test_en" -nfe 16
6
+ accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "F5TTS_Base" -t "ls_pc_test_clean" -nfe 16
7
+
8
+ # e.g. Vanilla E2 TTS, 32 NFE
9
+ accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -t "seedtts_test_zh" -o "midpoint" -ss 0
10
+ accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -t "seedtts_test_en" -o "midpoint" -ss 0
11
+ accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -t "ls_pc_test_clean" -o "midpoint" -ss 0
12
+
13
+ # etc.
F5-TTS/src/f5_tts/eval/eval_librispeech_test_clean.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Evaluate with Librispeech test-clean, ~3s prompt to generate 4-10s audio (the way of valle/voicebox evaluation)
2
+
3
+ import argparse
4
+ import json
5
+ import os
6
+ import sys
7
+
8
+ sys.path.append(os.getcwd())
9
+
10
+ import multiprocessing as mp
11
+ from importlib.resources import files
12
+
13
+ import numpy as np
14
+ from f5_tts.eval.utils_eval import (
15
+ get_librispeech_test,
16
+ run_asr_wer,
17
+ run_sim,
18
+ )
19
+
20
+ rel_path = str(files("f5_tts").joinpath("../../"))
21
+
22
+
23
+ def get_args():
24
+ parser = argparse.ArgumentParser()
25
+ parser.add_argument("-e", "--eval_task", type=str, default="wer", choices=["sim", "wer"])
26
+ parser.add_argument("-l", "--lang", type=str, default="en")
27
+ parser.add_argument("-g", "--gen_wav_dir", type=str, required=True)
28
+ parser.add_argument("-p", "--librispeech_test_clean_path", type=str, required=True)
29
+ parser.add_argument("-n", "--gpu_nums", type=int, default=8, help="Number of GPUs to use")
30
+ parser.add_argument("--local", action="store_true", help="Use local custom checkpoint directory")
31
+ parser.add_argument("--metalst", type=str, required=True)
32
+ return parser.parse_args()
33
+
34
+
35
+ def main():
36
+ args = get_args()
37
+ eval_task = args.eval_task
38
+ lang = args.lang
39
+ librispeech_test_clean_path = args.librispeech_test_clean_path # test-clean path
40
+ gen_wav_dir = args.gen_wav_dir
41
+ ####metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst"
42
+ ####metalst = rel_path + "/data/v2c_test.lst"
43
+ metalst = args.metalst
44
+
45
+ gpus = list(range(args.gpu_nums))
46
+ test_set = get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path)
47
+
48
+ ## In LibriSpeech, some speakers utilized varying voice characteristics for different characters in the book,
49
+ ## leading to a low similarity for the ground truth in some cases.
50
+ # test_set = get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth = True) # eval ground truth
51
+
52
+ ####local = args.local
53
+ local = True
54
+ if local: # use local custom checkpoint dir
55
+ asr_ckpt_dir = "./F5-TTS/ckpts/faster-whisper-large-v3"
56
+ else:
57
+ asr_ckpt_dir = "" # auto download to cache dir
58
+ wavlm_ckpt_dir = "./F5-TTS/ckpts/wavlm_large_finetune.pth"
59
+
60
+ # --------------------------- WER ---------------------------
61
+
62
+ if eval_task == "wer":
63
+ wer_results = []
64
+ wers = []
65
+
66
+ with mp.Pool(processes=len(gpus)) as pool:
67
+ args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set]
68
+ results = pool.map(run_asr_wer, args)
69
+ for r in results:
70
+ wer_results.extend(r)
71
+
72
+ wer_result_path = f"{gen_wav_dir}/{lang}_wer_results.jsonl"
73
+ with open(wer_result_path, "w") as f:
74
+ for line in wer_results:
75
+ wers.append(line["wer"])
76
+ json_line = json.dumps(line, ensure_ascii=False)
77
+ f.write(json_line + "\n")
78
+
79
+ wer = round(np.mean(wers) * 100, 3)
80
+ print(f"\nTotal {len(wers)} samples")
81
+ print(f"WER : {wer}%")
82
+ print(f"Results have been saved to {wer_result_path}")
83
+
84
+ # --------------------------- SIM ---------------------------
85
+
86
+ if eval_task == "sim":
87
+ sims = []
88
+ with mp.Pool(processes=len(gpus)) as pool:
89
+ args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set]
90
+ results = pool.map(run_sim, args)
91
+ for r in results:
92
+ sims.extend(r)
93
+
94
+ sim = round(sum(sims) / len(sims), 3)
95
+ print(f"\nTotal {len(sims)} samples")
96
+ print(f"SIM : {sim}")
97
+
98
+
99
+ if __name__ == "__main__":
100
+ main()
F5-TTS/src/f5_tts/eval/eval_seedtts_testset.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Evaluate with Seed-TTS testset
2
+
3
+ import argparse
4
+ import json
5
+ import os
6
+ import sys
7
+
8
+ sys.path.append(os.getcwd())
9
+
10
+ import multiprocessing as mp
11
+ from importlib.resources import files
12
+
13
+ import numpy as np
14
+ from f5_tts.eval.utils_eval import (
15
+ get_seed_tts_test,
16
+ run_asr_wer,
17
+ run_sim,
18
+ )
19
+
20
+ rel_path = str(files("f5_tts").joinpath("../../"))
21
+
22
+
23
+ def get_args():
24
+ parser = argparse.ArgumentParser()
25
+ parser.add_argument("-e", "--eval_task", type=str, default="wer", choices=["sim", "wer"])
26
+ parser.add_argument("-l", "--lang", type=str, default="en", choices=["zh", "en"])
27
+ parser.add_argument("-g", "--gen_wav_dir", type=str, required=True)
28
+ parser.add_argument("-n", "--gpu_nums", type=int, default=8, help="Number of GPUs to use")
29
+ parser.add_argument("--local", action="store_true", help="Use local custom checkpoint directory")
30
+ return parser.parse_args()
31
+
32
+
33
+ def main():
34
+ args = get_args()
35
+ eval_task = args.eval_task
36
+ lang = args.lang
37
+ gen_wav_dir = args.gen_wav_dir
38
+ metalst = rel_path + f"/data/seedtts_testset/{lang}/meta.lst" # seed-tts testset
39
+
40
+ # NOTE. paraformer-zh result will be slightly different according to the number of gpus, cuz batchsize is different
41
+ # zh 1.254 seems a result of 4 workers wer_seed_tts
42
+ gpus = list(range(args.gpu_nums))
43
+ test_set = get_seed_tts_test(metalst, gen_wav_dir, gpus)
44
+
45
+ local = args.local
46
+ if local: # use local custom checkpoint dir
47
+ if lang == "zh":
48
+ asr_ckpt_dir = "../checkpoints/funasr" # paraformer-zh dir under funasr
49
+ elif lang == "en":
50
+ asr_ckpt_dir = "../checkpoints/Systran/faster-whisper-large-v3"
51
+ else:
52
+ asr_ckpt_dir = "" # auto download to cache dir
53
+ wavlm_ckpt_dir = "../checkpoints/UniSpeech/wavlm_large_finetune.pth"
54
+
55
+ # --------------------------- WER ---------------------------
56
+
57
+ if eval_task == "wer":
58
+ wer_results = []
59
+ wers = []
60
+
61
+ with mp.Pool(processes=len(gpus)) as pool:
62
+ args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set]
63
+ results = pool.map(run_asr_wer, args)
64
+ for r in results:
65
+ wer_results.extend(r)
66
+
67
+ wer_result_path = f"{gen_wav_dir}/{lang}_wer_results.jsonl"
68
+ with open(wer_result_path, "w") as f:
69
+ for line in wer_results:
70
+ wers.append(line["wer"])
71
+ json_line = json.dumps(line, ensure_ascii=False)
72
+ f.write(json_line + "\n")
73
+
74
+ wer = round(np.mean(wers) * 100, 3)
75
+ print(f"\nTotal {len(wers)} samples")
76
+ print(f"WER : {wer}%")
77
+ print(f"Results have been saved to {wer_result_path}")
78
+
79
+ # --------------------------- SIM ---------------------------
80
+
81
+ if eval_task == "sim":
82
+ sims = []
83
+ with mp.Pool(processes=len(gpus)) as pool:
84
+ args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set]
85
+ results = pool.map(run_sim, args)
86
+ for r in results:
87
+ sims.extend(r)
88
+
89
+ sim = round(sum(sims) / len(sims), 3)
90
+ print(f"\nTotal {len(sims)} samples")
91
+ print(f"SIM : {sim}")
92
+
93
+
94
+ if __name__ == "__main__":
95
+ main()
F5-TTS/src/f5_tts/eval/eval_utmos.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import json
3
+ from pathlib import Path
4
+
5
+ import librosa
6
+ import torch
7
+ from tqdm import tqdm
8
+
9
+
10
+ def main():
11
+ parser = argparse.ArgumentParser(description="UTMOS Evaluation")
12
+ parser.add_argument("--audio_dir", type=str, required=True, help="Audio file path.")
13
+ parser.add_argument("--ext", type=str, default="wav", help="Audio extension.")
14
+ args = parser.parse_args()
15
+
16
+ device = "cuda" if torch.cuda.is_available() else "xpu" if torch.xpu.is_available() else "cpu"
17
+
18
+ predictor = torch.hub.load("tarepan/SpeechMOS:v1.2.0", "utmos22_strong", trust_repo=True)
19
+ predictor = predictor.to(device)
20
+
21
+ audio_paths = list(Path(args.audio_dir).rglob(f"*.{args.ext}"))
22
+ utmos_results = {}
23
+ utmos_score = 0
24
+
25
+ for audio_path in tqdm(audio_paths, desc="Processing"):
26
+ wav_name = audio_path.stem
27
+ wav, sr = librosa.load(audio_path, sr=None, mono=True)
28
+ wav_tensor = torch.from_numpy(wav).to(device).unsqueeze(0)
29
+ score = predictor(wav_tensor, sr)
30
+ utmos_results[str(wav_name)] = score.item()
31
+ utmos_score += score.item()
32
+
33
+ avg_score = utmos_score / len(audio_paths) if len(audio_paths) > 0 else 0
34
+ print(f"UTMOS: {avg_score}")
35
+
36
+ utmos_result_path = Path(args.audio_dir) / "utmos_results.json"
37
+ with open(utmos_result_path, "w", encoding="utf-8") as f:
38
+ json.dump(utmos_results, f, ensure_ascii=False, indent=4)
39
+
40
+ print(f"Results have been saved to {utmos_result_path}")
41
+
42
+
43
+ if __name__ == "__main__":
44
+ main()
F5-TTS/src/f5_tts/eval/eval_v2c_test.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Evaluate with Librispeech test-clean, ~3s prompt to generate 4-10s audio (the way of valle/voicebox evaluation)
2
+
3
+ import argparse
4
+ import json
5
+ import os
6
+ import sys
7
+
8
+ sys.path.append(os.getcwd())
9
+
10
+ import multiprocessing as mp
11
+ from importlib.resources import files
12
+
13
+ import numpy as np
14
+ from f5_tts.eval.utils_eval import (
15
+ get_librispeech_test,
16
+ run_asr_wer,
17
+ run_sim,
18
+ )
19
+
20
+ rel_path = str(files("f5_tts").joinpath("../../"))
21
+
22
+
23
+ def get_args():
24
+ parser = argparse.ArgumentParser()
25
+ parser.add_argument("-e", "--eval_task", type=str, default="wer", choices=["sim", "wer"])
26
+ parser.add_argument("-l", "--lang", type=str, default="en")
27
+ parser.add_argument("-g", "--gen_wav_dir", type=str, required=True)
28
+ parser.add_argument("-p", "--librispeech_test_clean_path", type=str, required=True)
29
+ parser.add_argument("-n", "--gpu_nums", type=int, default=8, help="Number of GPUs to use")
30
+ parser.add_argument("--local", action="store_true", help="Use local custom checkpoint directory")
31
+ parser.add_argument("--metalst", type=str, required=True)
32
+ return parser.parse_args()
33
+
34
+
35
+ def main():
36
+ args = get_args()
37
+ eval_task = args.eval_task
38
+ lang = args.lang
39
+ librispeech_test_clean_path = args.librispeech_test_clean_path # test-clean path
40
+ gen_wav_dir = args.gen_wav_dir
41
+ ####metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst"
42
+ ####metalst = rel_path + "/data/v2c_test.lst"
43
+ metalst = args.metalst
44
+
45
+ gpus = list(range(args.gpu_nums))
46
+ test_set = get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path)
47
+
48
+ ## In LibriSpeech, some speakers utilized varying voice characteristics for different characters in the book,
49
+ ## leading to a low similarity for the ground truth in some cases.
50
+ # test_set = get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth = True) # eval ground truth
51
+
52
+ ####local = args.local
53
+ local = True
54
+ if local: # use local custom checkpoint dir
55
+ asr_ckpt_dir = "./F5-TTS/ckpts/faster-whisper-large-v3"
56
+ else:
57
+ asr_ckpt_dir = "" # auto download to cache dir
58
+ wavlm_ckpt_dir = "./F5-TTS/ckpts/wavlm_large_finetune.pth"
59
+
60
+ # --------------------------- WER ---------------------------
61
+
62
+ if eval_task == "wer":
63
+ wer_results = []
64
+ wers = []
65
+
66
+ with mp.Pool(processes=len(gpus)) as pool:
67
+ args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set]
68
+ results = pool.map(run_asr_wer, args)
69
+ for r in results:
70
+ wer_results.extend(r)
71
+
72
+ wer_result_path = f"{gen_wav_dir}/{lang}_wer_results.jsonl"
73
+ with open(wer_result_path, "w") as f:
74
+ for line in wer_results:
75
+ wers.append(line["wer"])
76
+ json_line = json.dumps(line, ensure_ascii=False)
77
+ f.write(json_line + "\n")
78
+
79
+ wer = round(np.mean(wers) * 100, 3)
80
+ print(f"\nTotal {len(wers)} samples")
81
+ print(f"WER : {wer}%")
82
+ print(f"Results have been saved to {wer_result_path}")
83
+
84
+ # --------------------------- SIM ---------------------------
85
+
86
+ if eval_task == "sim":
87
+ sims = []
88
+ with mp.Pool(processes=len(gpus)) as pool:
89
+ args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set]
90
+ results = pool.map(run_sim, args)
91
+ for r in results:
92
+ sims.extend(r)
93
+
94
+ sim = round(sum(sims) / len(sims), 3)
95
+ print(f"\nTotal {len(sims)} samples")
96
+ print(f"SIM : {sim}")
97
+
98
+
99
+ if __name__ == "__main__":
100
+ main()
F5-TTS/src/f5_tts/eval/utils_eval.py ADDED
@@ -0,0 +1,419 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import random
4
+ import string
5
+ from pathlib import Path
6
+
7
+ import torch
8
+ import torch.nn.functional as F
9
+ import torchaudio
10
+ from tqdm import tqdm
11
+
12
+ from f5_tts.eval.ecapa_tdnn import ECAPA_TDNN_SMALL
13
+ from f5_tts.model.modules import MelSpec
14
+ from f5_tts.model.utils import convert_char_to_pinyin
15
+
16
+
17
+ # seedtts testset metainfo: utt, prompt_text, prompt_wav, gt_text, gt_wav
18
+ def get_seedtts_testset_metainfo(metalst):
19
+ f = open(metalst)
20
+ lines = f.readlines()
21
+ f.close()
22
+ metainfo = []
23
+ for line in lines:
24
+ if len(line.strip().split("|")) == 5:
25
+ utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split("|")
26
+ elif len(line.strip().split("|")) == 4:
27
+ utt, prompt_text, prompt_wav, gt_text = line.strip().split("|")
28
+ gt_wav = os.path.join(os.path.dirname(metalst), "wavs", utt + ".wav")
29
+ if not os.path.isabs(prompt_wav):
30
+ prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)
31
+ metainfo.append((utt, prompt_text, prompt_wav, gt_text, gt_wav))
32
+ return metainfo
33
+
34
+
35
+ # librispeech test-clean metainfo: gen_utt, ref_txt, ref_wav, gen_txt, gen_wav
36
+ def get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path):
37
+ f = open(metalst)
38
+ lines = f.readlines()
39
+ f.close()
40
+ metainfo = []
41
+ for line in lines:
42
+ ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split("\t")
43
+
44
+ # ref_txt = ref_txt[0] + ref_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc)
45
+ ref_spk_id, ref_chaptr_id, _ = ref_utt.split("-")
46
+ ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + ".flac")
47
+
48
+ # gen_txt = gen_txt[0] + gen_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc)
49
+ gen_spk_id, gen_chaptr_id, _ = gen_utt.split("-")
50
+ gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + ".flac")
51
+
52
+ metainfo.append((gen_utt, ref_txt, ref_wav, " " + gen_txt, gen_wav))
53
+
54
+ return metainfo
55
+
56
+
57
+ # padded to max length mel batch
58
+ def padded_mel_batch(ref_mels):
59
+ max_mel_length = torch.LongTensor([mel.shape[-1] for mel in ref_mels]).amax()
60
+ padded_ref_mels = []
61
+ for mel in ref_mels:
62
+ padded_ref_mel = F.pad(mel, (0, max_mel_length - mel.shape[-1]), value=0)
63
+ padded_ref_mels.append(padded_ref_mel)
64
+ padded_ref_mels = torch.stack(padded_ref_mels)
65
+ padded_ref_mels = padded_ref_mels.permute(0, 2, 1)
66
+ return padded_ref_mels
67
+
68
+
69
+ # get prompts from metainfo containing: utt, prompt_text, prompt_wav, gt_text, gt_wav
70
+
71
+
72
+ def get_inference_prompt(
73
+ metainfo,
74
+ speed=1.0,
75
+ tokenizer="pinyin",
76
+ polyphone=True,
77
+ target_sample_rate=24000,
78
+ n_fft=1024,
79
+ win_length=1024,
80
+ n_mel_channels=100,
81
+ hop_length=256,
82
+ mel_spec_type="vocos",
83
+ target_rms=0.1,
84
+ use_truth_duration=False,
85
+ infer_batch_size=1,
86
+ num_buckets=200,
87
+ min_secs=3,
88
+ max_secs=40,
89
+ ):
90
+ prompts_all = []
91
+
92
+ min_tokens = min_secs * target_sample_rate // hop_length
93
+ max_tokens = max_secs * target_sample_rate // hop_length
94
+
95
+ batch_accum = [0] * num_buckets
96
+ utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = (
97
+ [[] for _ in range(num_buckets)] for _ in range(6)
98
+ )
99
+
100
+ mel_spectrogram = MelSpec(
101
+ n_fft=n_fft,
102
+ hop_length=hop_length,
103
+ win_length=win_length,
104
+ n_mel_channels=n_mel_channels,
105
+ target_sample_rate=target_sample_rate,
106
+ mel_spec_type=mel_spec_type,
107
+ )
108
+
109
+ for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."):
110
+ # Audio
111
+ ref_audio, ref_sr = torchaudio.load(prompt_wav)
112
+ ref_rms = torch.sqrt(torch.mean(torch.square(ref_audio)))
113
+ if ref_rms < target_rms:
114
+ ref_audio = ref_audio * target_rms / ref_rms
115
+ assert ref_audio.shape[-1] > 5000, f"Empty prompt wav: {prompt_wav}, or torchaudio backend issue."
116
+ if ref_sr != target_sample_rate:
117
+ resampler = torchaudio.transforms.Resample(ref_sr, target_sample_rate)
118
+ ref_audio = resampler(ref_audio)
119
+
120
+ # Text
121
+ if len(prompt_text[-1].encode("utf-8")) == 1:
122
+ prompt_text = prompt_text + " "
123
+ text = [prompt_text + gt_text]
124
+ if tokenizer == "pinyin":
125
+ text_list = convert_char_to_pinyin(text, polyphone=polyphone)
126
+ else:
127
+ text_list = text
128
+
129
+ # Duration, mel frame length
130
+ ref_mel_len = ref_audio.shape[-1] // hop_length
131
+ if use_truth_duration:
132
+ gt_audio, gt_sr = torchaudio.load(gt_wav)
133
+ if gt_sr != target_sample_rate:
134
+ resampler = torchaudio.transforms.Resample(gt_sr, target_sample_rate)
135
+ gt_audio = resampler(gt_audio)
136
+ total_mel_len = ref_mel_len + int(gt_audio.shape[-1] / hop_length / speed)
137
+
138
+ # # test vocoder resynthesis
139
+ # ref_audio = gt_audio
140
+ else:
141
+ ref_text_len = len(prompt_text.encode("utf-8"))
142
+ gen_text_len = len(gt_text.encode("utf-8"))
143
+ total_mel_len = ref_mel_len + int(ref_mel_len / ref_text_len * gen_text_len / speed)
144
+
145
+ # to mel spectrogram
146
+ ref_mel = mel_spectrogram(ref_audio)
147
+ ref_mel = ref_mel.squeeze(0)
148
+
149
+ # deal with batch
150
+ assert infer_batch_size > 0, "infer_batch_size should be greater than 0."
151
+ assert (
152
+ min_tokens <= total_mel_len <= max_tokens
153
+ ), f"Audio {utt} has duration {total_mel_len*hop_length//target_sample_rate}s out of range [{min_secs}, {max_secs}]."
154
+ bucket_i = math.floor((total_mel_len - min_tokens) / (max_tokens - min_tokens + 1) * num_buckets)
155
+
156
+ utts[bucket_i].append(utt)
157
+ ref_rms_list[bucket_i].append(ref_rms)
158
+ ref_mels[bucket_i].append(ref_mel)
159
+ ref_mel_lens[bucket_i].append(ref_mel_len)
160
+ total_mel_lens[bucket_i].append(total_mel_len)
161
+ final_text_list[bucket_i].extend(text_list)
162
+
163
+ batch_accum[bucket_i] += total_mel_len
164
+
165
+ if batch_accum[bucket_i] >= infer_batch_size:
166
+ # print(f"\n{len(ref_mels[bucket_i][0][0])}\n{ref_mel_lens[bucket_i]}\n{total_mel_lens[bucket_i]}")
167
+ prompts_all.append(
168
+ (
169
+ utts[bucket_i],
170
+ ref_rms_list[bucket_i],
171
+ padded_mel_batch(ref_mels[bucket_i]),
172
+ ref_mel_lens[bucket_i],
173
+ total_mel_lens[bucket_i],
174
+ final_text_list[bucket_i],
175
+ )
176
+ )
177
+ batch_accum[bucket_i] = 0
178
+ (
179
+ utts[bucket_i],
180
+ ref_rms_list[bucket_i],
181
+ ref_mels[bucket_i],
182
+ ref_mel_lens[bucket_i],
183
+ total_mel_lens[bucket_i],
184
+ final_text_list[bucket_i],
185
+ ) = [], [], [], [], [], []
186
+
187
+ # add residual
188
+ for bucket_i, bucket_frames in enumerate(batch_accum):
189
+ if bucket_frames > 0:
190
+ prompts_all.append(
191
+ (
192
+ utts[bucket_i],
193
+ ref_rms_list[bucket_i],
194
+ padded_mel_batch(ref_mels[bucket_i]),
195
+ ref_mel_lens[bucket_i],
196
+ total_mel_lens[bucket_i],
197
+ final_text_list[bucket_i],
198
+ )
199
+ )
200
+ # not only leave easy work for last workers
201
+ random.seed(666)
202
+ random.shuffle(prompts_all)
203
+
204
+ return prompts_all
205
+
206
+
207
+ # get wav_res_ref_text of seed-tts test metalst
208
+ # https://github.com/BytedanceSpeech/seed-tts-eval
209
+
210
+
211
+ def get_seed_tts_test(metalst, gen_wav_dir, gpus):
212
+ f = open(metalst)
213
+ lines = f.readlines()
214
+ f.close()
215
+
216
+ test_set_ = []
217
+ for line in tqdm(lines):
218
+ if len(line.strip().split("|")) == 5:
219
+ utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split("|")
220
+ elif len(line.strip().split("|")) == 4:
221
+ utt, prompt_text, prompt_wav, gt_text = line.strip().split("|")
222
+
223
+ if not os.path.exists(os.path.join(gen_wav_dir, utt + ".wav")):
224
+ continue
225
+ gen_wav = os.path.join(gen_wav_dir, utt + ".wav")
226
+ if not os.path.isabs(prompt_wav):
227
+ prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)
228
+
229
+ test_set_.append((gen_wav, prompt_wav, gt_text))
230
+
231
+ num_jobs = len(gpus)
232
+ if num_jobs == 1:
233
+ return [(gpus[0], test_set_)]
234
+
235
+ wav_per_job = len(test_set_) // num_jobs + 1
236
+ test_set = []
237
+ for i in range(num_jobs):
238
+ test_set.append((gpus[i], test_set_[i * wav_per_job : (i + 1) * wav_per_job]))
239
+
240
+ return test_set
241
+
242
+
243
+ # get librispeech test-clean cross sentence test
244
+
245
+
246
+ def get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth=False):
247
+ f = open(metalst)
248
+ lines = f.readlines()
249
+ f.close()
250
+
251
+ test_set_ = []
252
+ for index, line in tqdm(enumerate(lines)):
253
+ ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split("\t")
254
+ ref_utt = str(index).zfill(8)
255
+ gen_utt = str(index).zfill(8)
256
+
257
+ if eval_ground_truth:
258
+ gen_spk_id, gen_chaptr_id, _ = gen_utt.split("-")
259
+ gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + ".flac")
260
+ else:
261
+ if not os.path.exists(os.path.join(gen_wav_dir, gen_utt + ".wav")):
262
+ raise FileNotFoundError(f"Generated wav not found: {gen_utt}")
263
+ gen_wav = os.path.join(gen_wav_dir, gen_utt + ".wav")
264
+
265
+ ####ref_spk_id, ref_chaptr_id, _ = ref_utt.split("-")
266
+ ####ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + ".flac")
267
+ ref_wav = os.path.join(librispeech_test_clean_path, ref_utt + ".wav")
268
+
269
+ test_set_.append((gen_wav, ref_wav, gen_txt))
270
+
271
+ num_jobs = len(gpus)
272
+ if num_jobs == 1:
273
+ return [(gpus[0], test_set_)]
274
+
275
+ wav_per_job = len(test_set_) // num_jobs + 1
276
+ test_set = []
277
+ for i in range(num_jobs):
278
+ test_set.append((gpus[i], test_set_[i * wav_per_job : (i + 1) * wav_per_job]))
279
+
280
+ return test_set
281
+
282
+
283
+ # load asr model
284
+
285
+
286
+ def load_asr_model(lang, ckpt_dir=""):
287
+ if lang == "zh":
288
+ from funasr import AutoModel
289
+
290
+ model = AutoModel(
291
+ model=os.path.join(ckpt_dir, "paraformer-zh"),
292
+ # vad_model = os.path.join(ckpt_dir, "fsmn-vad"),
293
+ # punc_model = os.path.join(ckpt_dir, "ct-punc"),
294
+ # spk_model = os.path.join(ckpt_dir, "cam++"),
295
+ disable_update=True,
296
+ ) # following seed-tts setting
297
+ elif lang == "en":
298
+ from faster_whisper import WhisperModel
299
+
300
+ model_size = "large-v3" if ckpt_dir == "" else ckpt_dir
301
+ model = WhisperModel(model_size, device="cuda", compute_type="float16")
302
+ return model
303
+
304
+
305
+ # WER Evaluation, the way Seed-TTS does
306
+
307
+
308
+ def run_asr_wer(args):
309
+ rank, lang, test_set, ckpt_dir = args
310
+
311
+ if lang == "zh":
312
+ import zhconv
313
+
314
+ torch.cuda.set_device(rank)
315
+ elif lang == "en":
316
+ os.environ["CUDA_VISIBLE_DEVICES"] = str(rank)
317
+ else:
318
+ raise NotImplementedError(
319
+ "lang support only 'zh' (funasr paraformer-zh), 'en' (faster-whisper-large-v3), for now."
320
+ )
321
+
322
+ asr_model = load_asr_model(lang, ckpt_dir=ckpt_dir)
323
+
324
+ from zhon.hanzi import punctuation
325
+
326
+ punctuation_all = punctuation + string.punctuation
327
+ wer_results = []
328
+
329
+ from jiwer import compute_measures
330
+
331
+ for gen_wav, prompt_wav, truth in tqdm(test_set):
332
+ if lang == "zh":
333
+ res = asr_model.generate(input=gen_wav, batch_size_s=300, disable_pbar=True)
334
+ hypo = res[0]["text"]
335
+ hypo = zhconv.convert(hypo, "zh-cn")
336
+ elif lang == "en":
337
+ segments, _ = asr_model.transcribe(gen_wav, beam_size=5, language="en")
338
+ hypo = ""
339
+ for segment in segments:
340
+ hypo = hypo + " " + segment.text
341
+
342
+ raw_truth = truth
343
+ raw_hypo = hypo
344
+
345
+ for x in punctuation_all:
346
+ truth = truth.replace(x, "")
347
+ hypo = hypo.replace(x, "")
348
+
349
+ truth = truth.replace(" ", " ")
350
+ hypo = hypo.replace(" ", " ")
351
+
352
+ if lang == "zh":
353
+ truth = " ".join([x for x in truth])
354
+ hypo = " ".join([x for x in hypo])
355
+ elif lang == "en":
356
+ truth = truth.lower()
357
+ hypo = hypo.lower()
358
+
359
+ measures = compute_measures(truth, hypo)
360
+ wer = measures["wer"]
361
+
362
+ # ref_list = truth.split(" ")
363
+ # subs = measures["substitutions"] / len(ref_list)
364
+ # dele = measures["deletions"] / len(ref_list)
365
+ # inse = measures["insertions"] / len(ref_list)
366
+
367
+ wer_results.append(
368
+ {
369
+ "wav": Path(gen_wav).stem,
370
+ "truth": raw_truth,
371
+ "hypo": raw_hypo,
372
+ "wer": wer,
373
+ }
374
+ )
375
+
376
+ return wer_results
377
+
378
+
379
+ # SIM Evaluation
380
+
381
+
382
+ def run_sim(args):
383
+ rank, test_set, ckpt_dir = args
384
+ device = f"cuda:{rank}"
385
+
386
+ model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type="wavlm_large", config_path=None)
387
+ state_dict = torch.load(ckpt_dir, weights_only=True, map_location=lambda storage, loc: storage)
388
+ model.load_state_dict(state_dict["model"], strict=False)
389
+
390
+ use_gpu = True if torch.cuda.is_available() else False
391
+ if use_gpu:
392
+ model = model.cuda(device)
393
+ model.eval()
394
+
395
+ sims = []
396
+ for wav1, wav2, truth in tqdm(test_set):
397
+ wav1, sr1 = torchaudio.load(wav1)
398
+ wav2, sr2 = torchaudio.load(wav2)
399
+
400
+ if torch.isnan(wav1).any() or torch.isnan(wav2).any() or torch.isinf(wav1).any() or torch.isinf(wav2).any():
401
+ continue
402
+
403
+ resample1 = torchaudio.transforms.Resample(orig_freq=sr1, new_freq=16000)
404
+ resample2 = torchaudio.transforms.Resample(orig_freq=sr2, new_freq=16000)
405
+ wav1 = resample1(wav1)
406
+ wav2 = resample2(wav2)
407
+
408
+ if use_gpu:
409
+ wav1 = wav1.cuda(device)
410
+ wav2 = wav2.cuda(device)
411
+ with torch.no_grad():
412
+ emb1 = model(wav1)
413
+ emb2 = model(wav2)
414
+
415
+ sim = F.cosine_similarity(emb1, emb2)[0].item()
416
+ # print(f"VSim score between two audios: {sim:.4f} (-1.0, 1.0).")
417
+ sims.append(sim)
418
+
419
+ return sims
F5-TTS/src/f5_tts/infer/README.md ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Inference
2
+
3
+ The pretrained model checkpoints can be reached at [🤗 Hugging Face](https://huggingface.co/SWivid/F5-TTS) and [🤖 Model Scope](https://www.modelscope.cn/models/SWivid/F5-TTS_Emilia-ZH-EN), or will be automatically downloaded when running inference scripts.
4
+
5
+ **More checkpoints with whole community efforts can be found in [SHARED.md](SHARED.md), supporting more languages.**
6
+
7
+ Currently support **30s for a single** generation, which is the **total length** including both prompt and output audio. However, you can provide `infer_cli` and `infer_gradio` with longer text, will automatically do chunk generation. Long reference audio will be **clip short to ~15s**.
8
+
9
+ To avoid possible inference failures, make sure you have seen through the following instructions.
10
+
11
+ - Use reference audio <15s and leave some silence (e.g. 1s) at the end. Otherwise there is a risk of truncating in the middle of word, leading to suboptimal generation.
12
+ - Uppercased letters will be uttered letter by letter, so use lowercased letters for normal words.
13
+ - Add some spaces (blank: " ") or punctuations (e.g. "," ".") to explicitly introduce some pauses.
14
+ - Preprocess numbers to Chinese letters if you want to have them read in Chinese, otherwise in English.
15
+ - If the generation output is blank (pure silence), check for ffmpeg installation (various tutorials online, blogs, videos, etc.).
16
+ - Try turn off use_ema if using an early-stage finetuned checkpoint (which goes just few updates).
17
+
18
+
19
+ ## Gradio App
20
+
21
+ Currently supported features:
22
+
23
+ - Basic TTS with Chunk Inference
24
+ - Multi-Style / Multi-Speaker Generation
25
+ - Voice Chat powered by Qwen2.5-3B-Instruct
26
+
27
+ The cli command `f5-tts_infer-gradio` equals to `python src/f5_tts/infer/infer_gradio.py`, which launches a Gradio APP (web interface) for inference.
28
+
29
+ The script will load model checkpoints from Huggingface. You can also manually download files and update the path to `load_model()` in `infer_gradio.py`. Currently only load TTS models first, will load ASR model to do transcription if `ref_text` not provided, will load LLM model if use Voice Chat.
30
+
31
+ Could also be used as a component for larger application.
32
+ ```python
33
+ import gradio as gr
34
+ from f5_tts.infer.infer_gradio import app
35
+
36
+ with gr.Blocks() as main_app:
37
+ gr.Markdown("# This is an example of using F5-TTS within a bigger Gradio app")
38
+
39
+ # ... other Gradio components
40
+
41
+ app.render()
42
+
43
+ main_app.launch()
44
+ ```
45
+
46
+
47
+ ## CLI Inference
48
+
49
+ The cli command `f5-tts_infer-cli` equals to `python src/f5_tts/infer/infer_cli.py`, which is a command line tool for inference.
50
+
51
+ The script will load model checkpoints from Huggingface. You can also manually download files and use `--ckpt_file` to specify the model you want to load, or directly update in `infer_cli.py`.
52
+
53
+ For change vocab.txt use `--vocab_file` to provide your `vocab.txt` file.
54
+
55
+ Basically you can inference with flags:
56
+ ```bash
57
+ # Leave --ref_text "" will have ASR model transcribe (extra GPU memory usage)
58
+ f5-tts_infer-cli \
59
+ --model "F5-TTS" \
60
+ --ref_audio "ref_audio.wav" \
61
+ --ref_text "The content, subtitle or transcription of reference audio." \
62
+ --gen_text "Some text you want TTS model generate for you."
63
+
64
+ # Choose Vocoder
65
+ f5-tts_infer-cli --vocoder_name bigvgan --load_vocoder_from_local --ckpt_file <YOUR_CKPT_PATH, eg:ckpts/F5TTS_Base_bigvgan/model_1250000.pt>
66
+ f5-tts_infer-cli --vocoder_name vocos --load_vocoder_from_local --ckpt_file <YOUR_CKPT_PATH, eg:ckpts/F5TTS_Base/model_1200000.safetensors>
67
+
68
+ # More instructions
69
+ f5-tts_infer-cli --help
70
+ ```
71
+
72
+ And a `.toml` file would help with more flexible usage.
73
+
74
+ ```bash
75
+ f5-tts_infer-cli -c custom.toml
76
+ ```
77
+
78
+ For example, you can use `.toml` to pass in variables, refer to `src/f5_tts/infer/examples/basic/basic.toml`:
79
+
80
+ ```toml
81
+ # F5-TTS | E2-TTS
82
+ model = "F5-TTS"
83
+ ref_audio = "infer/examples/basic/basic_ref_en.wav"
84
+ # If an empty "", transcribes the reference audio automatically.
85
+ ref_text = "Some call me nature, others call me mother nature."
86
+ gen_text = "I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring."
87
+ # File with text to generate. Ignores the text above.
88
+ gen_file = ""
89
+ remove_silence = false
90
+ output_dir = "tests"
91
+ ```
92
+
93
+ You can also leverage `.toml` file to do multi-style generation, refer to `src/f5_tts/infer/examples/multi/story.toml`.
94
+
95
+ ```toml
96
+ # F5-TTS | E2-TTS
97
+ model = "F5-TTS"
98
+ ref_audio = "infer/examples/multi/main.flac"
99
+ # If an empty "", transcribes the reference audio automatically.
100
+ ref_text = ""
101
+ gen_text = ""
102
+ # File with text to generate. Ignores the text above.
103
+ gen_file = "infer/examples/multi/story.txt"
104
+ remove_silence = true
105
+ output_dir = "tests"
106
+
107
+ [voices.town]
108
+ ref_audio = "infer/examples/multi/town.flac"
109
+ ref_text = ""
110
+
111
+ [voices.country]
112
+ ref_audio = "infer/examples/multi/country.flac"
113
+ ref_text = ""
114
+ ```
115
+ You should mark the voice with `[main]` `[town]` `[country]` whenever you want to change voice, refer to `src/f5_tts/infer/examples/multi/story.txt`.
116
+
117
+ ## Speech Editing
118
+
119
+ To test speech editing capabilities, use the following command:
120
+
121
+ ```bash
122
+ python src/f5_tts/infer/speech_edit.py
123
+ ```
124
+
125
+ ## Socket Realtime Client
126
+
127
+ To communicate with socket server you need to run
128
+ ```bash
129
+ python src/f5_tts/socket_server.py
130
+ ```
131
+
132
+ <details>
133
+ <summary>Then create client to communicate</summary>
134
+
135
+ ``` python
136
+ import socket
137
+ import numpy as np
138
+ import asyncio
139
+ import pyaudio
140
+
141
+ async def listen_to_voice(text, server_ip='localhost', server_port=9999):
142
+ client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
143
+ client_socket.connect((server_ip, server_port))
144
+
145
+ async def play_audio_stream():
146
+ buffer = b''
147
+ p = pyaudio.PyAudio()
148
+ stream = p.open(format=pyaudio.paFloat32,
149
+ channels=1,
150
+ rate=24000, # Ensure this matches the server's sampling rate
151
+ output=True,
152
+ frames_per_buffer=2048)
153
+
154
+ try:
155
+ while True:
156
+ chunk = await asyncio.get_event_loop().run_in_executor(None, client_socket.recv, 1024)
157
+ if not chunk: # End of stream
158
+ break
159
+ if b"END_OF_AUDIO" in chunk:
160
+ buffer += chunk.replace(b"END_OF_AUDIO", b"")
161
+ if buffer:
162
+ audio_array = np.frombuffer(buffer, dtype=np.float32).copy() # Make a writable copy
163
+ stream.write(audio_array.tobytes())
164
+ break
165
+ buffer += chunk
166
+ if len(buffer) >= 4096:
167
+ audio_array = np.frombuffer(buffer[:4096], dtype=np.float32).copy() # Make a writable copy
168
+ stream.write(audio_array.tobytes())
169
+ buffer = buffer[4096:]
170
+ finally:
171
+ stream.stop_stream()
172
+ stream.close()
173
+ p.terminate()
174
+
175
+ try:
176
+ # Send only the text to the server
177
+ await asyncio.get_event_loop().run_in_executor(None, client_socket.sendall, text.encode('utf-8'))
178
+ await play_audio_stream()
179
+ print("Audio playback finished.")
180
+
181
+ except Exception as e:
182
+ print(f"Error in listen_to_voice: {e}")
183
+
184
+ finally:
185
+ client_socket.close()
186
+
187
+ # Example usage: Replace this with your actual server IP and port
188
+ async def main():
189
+ await listen_to_voice("my name is jenny..", server_ip='localhost', server_port=9998)
190
+
191
+ # Run the main async function
192
+ asyncio.run(main())
193
+ ```
194
+
195
+ </details>
196
+
F5-TTS/src/f5_tts/infer/SHARED.md ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!-- omit in toc -->
2
+ # Shared Model Cards
3
+
4
+ <!-- omit in toc -->
5
+ ### **Prerequisites of using**
6
+ - This document is serving as a quick lookup table for the community training/finetuning result, with various language support.
7
+ - The models in this repository are open source and are based on voluntary contributions from contributors.
8
+ - The use of models must be conditioned on respect for the respective creators. The convenience brought comes from their efforts.
9
+
10
+ <!-- omit in toc -->
11
+ ### **Welcome to share here**
12
+ - Have a pretrained/finetuned result: model checkpoint (pruned best to facilitate inference, i.e. leave only `ema_model_state_dict`) and corresponding vocab file (for tokenization).
13
+ - Host a public [huggingface model repository](https://huggingface.co/new) and upload the model related files.
14
+ - Make a pull request adding a model card to the current page, i.e. `src\f5_tts\infer\SHARED.md`.
15
+
16
+ <!-- omit in toc -->
17
+ ### Supported Languages
18
+ - [Multilingual](#multilingual)
19
+ - [F5-TTS Base @ zh \& en @ F5-TTS](#f5-tts-base--zh--en--f5-tts)
20
+ - [English](#english)
21
+ - [Finnish](#finnish)
22
+ - [F5-TTS Base @ fi @ AsmoKoskinen](#f5-tts-base--fi--asmokoskinen)
23
+ - [French](#french)
24
+ - [F5-TTS Base @ fr @ RASPIAUDIO](#f5-tts-base--fr--raspiaudio)
25
+ - [Hindi](#hindi)
26
+ - [F5-TTS Small @ hi @ SPRINGLab](#f5-tts-small--hi--springlab)
27
+ - [Italian](#italian)
28
+ - [F5-TTS Base @ it @ alien79](#f5-tts-base--it--alien79)
29
+ - [Japanese](#japanese)
30
+ - [F5-TTS Base @ ja @ Jmica](#f5-tts-base--ja--jmica)
31
+ - [Mandarin](#mandarin)
32
+ - [Russian](#russian)
33
+ - [F5-TTS Base @ ru @ HotDro4illa](#f5-tts-base--ru--hotdro4illa)
34
+ - [Spanish](#spanish)
35
+ - [F5-TTS Base @ es @ jpgallegoar](#f5-tts-base--es--jpgallegoar)
36
+
37
+
38
+ ## Multilingual
39
+
40
+ #### F5-TTS Base @ zh & en @ F5-TTS
41
+ |Model|🤗Hugging Face|Data (Hours)|Model License|
42
+ |:---:|:------------:|:-----------:|:-------------:|
43
+ |F5-TTS Base|[ckpt & vocab](https://huggingface.co/SWivid/F5-TTS/tree/main/F5TTS_Base)|[Emilia 95K zh&en](https://huggingface.co/datasets/amphion/Emilia-Dataset/tree/fc71e07)|cc-by-nc-4.0|
44
+
45
+ ```bash
46
+ Model: hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors
47
+ Vocab: hf://SWivid/F5-TTS/F5TTS_Base/vocab.txt
48
+ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
49
+ ```
50
+
51
+ *Other infos, e.g. Author info, Github repo, Link to some sampled results, Usage instruction, Tutorial (Blog, Video, etc.) ...*
52
+
53
+
54
+ ## English
55
+
56
+
57
+ ## Finnish
58
+
59
+ #### F5-TTS Base @ fi @ AsmoKoskinen
60
+ |Model|🤗Hugging Face|Data|Model License|
61
+ |:---:|:------------:|:-----------:|:-------------:|
62
+ |F5-TTS Base|[ckpt & vocab](https://huggingface.co/AsmoKoskinen/F5-TTS_Finnish_Model)|[Common Voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0), [Vox Populi](https://huggingface.co/datasets/facebook/voxpopuli)|cc-by-nc-4.0|
63
+
64
+ ```bash
65
+ Model: hf://AsmoKoskinen/F5-TTS_Finnish_Model/model_common_voice_fi_vox_populi_fi_20241206.safetensors
66
+ Vocab: hf://AsmoKoskinen/F5-TTS_Finnish_Model/vocab.txt
67
+ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
68
+ ```
69
+
70
+
71
+ ## French
72
+
73
+ #### F5-TTS Base @ fr @ RASPIAUDIO
74
+ |Model|🤗Hugging Face|Data (Hours)|Model License|
75
+ |:---:|:------------:|:-----------:|:-------------:|
76
+ |F5-TTS Base|[ckpt & vocab](https://huggingface.co/RASPIAUDIO/F5-French-MixedSpeakers-reduced)|[LibriVox](https://librivox.org/)|cc-by-nc-4.0|
77
+
78
+ ```bash
79
+ Model: hf://RASPIAUDIO/F5-French-MixedSpeakers-reduced/model_last_reduced.pt
80
+ Vocab: hf://RASPIAUDIO/F5-French-MixedSpeakers-reduced/vocab.txt
81
+ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
82
+ ```
83
+
84
+ - [Online Inference with Hugging Face Space](https://huggingface.co/spaces/RASPIAUDIO/f5-tts_french).
85
+ - [Tutorial video to train a new language model](https://www.youtube.com/watch?v=UO4usaOojys).
86
+ - [Discussion about this training can be found here](https://github.com/SWivid/F5-TTS/issues/434).
87
+
88
+
89
+ ## Hindi
90
+
91
+ #### F5-TTS Small @ hi @ SPRINGLab
92
+ |Model|🤗Hugging Face|Data (Hours)|Model License|
93
+ |:---:|:------------:|:-----------:|:-------------:|
94
+ |F5-TTS Small|[ckpt & vocab](https://huggingface.co/SPRINGLab/F5-Hindi-24KHz)|[IndicTTS Hi](https://huggingface.co/datasets/SPRINGLab/IndicTTS-Hindi) & [IndicVoices-R Hi](https://huggingface.co/datasets/SPRINGLab/IndicVoices-R_Hindi) |cc-by-4.0|
95
+
96
+ ```bash
97
+ Model: hf://SPRINGLab/F5-Hindi-24KHz/model_2500000.safetensors
98
+ Vocab: hf://SPRINGLab/F5-Hindi-24KHz/vocab.txt
99
+ Config: {"dim": 768, "depth": 18, "heads": 12, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
100
+ ```
101
+
102
+ - Authors: SPRING Lab, Indian Institute of Technology, Madras
103
+ - Website: https://asr.iitm.ac.in/
104
+
105
+
106
+ ## Italian
107
+
108
+ #### F5-TTS Base @ it @ alien79
109
+ |Model|🤗Hugging Face|Data|Model License|
110
+ |:---:|:------------:|:-----------:|:-------------:|
111
+ |F5-TTS Base|[ckpt & vocab](https://huggingface.co/alien79/F5-TTS-italian)|[ylacombe/cml-tts](https://huggingface.co/datasets/ylacombe/cml-tts) |cc-by-nc-4.0|
112
+
113
+ ```bash
114
+ Model: hf://alien79/F5-TTS-italian/model_159600.safetensors
115
+ Vocab: hf://alien79/F5-TTS-italian/vocab.txt
116
+ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
117
+ ```
118
+
119
+ - Trained by [Mithril Man](https://github.com/MithrilMan)
120
+ - Model details on [hf project home](https://huggingface.co/alien79/F5-TTS-italian)
121
+ - Open to collaborations to further improve the model
122
+
123
+
124
+ ## Japanese
125
+
126
+ #### F5-TTS Base @ ja @ Jmica
127
+ |Model|🤗Hugging Face|Data (Hours)|Model License|
128
+ |:---:|:------------:|:-----------:|:-------------:|
129
+ |F5-TTS Base|[ckpt & vocab](https://huggingface.co/Jmica/F5TTS/tree/main/JA_25498980)|[Emilia 1.7k JA](https://huggingface.co/datasets/amphion/Emilia-Dataset/tree/fc71e07) & [Galgame Dataset 5.4k](https://huggingface.co/datasets/OOPPEENN/Galgame_Dataset)|cc-by-nc-4.0|
130
+
131
+ ```bash
132
+ Model: hf://Jmica/F5TTS/JA_25498980/model_25498980.pt
133
+ Vocab: hf://Jmica/F5TTS/JA_25498980/vocab_updated.txt
134
+ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
135
+ ```
136
+
137
+
138
+ ## Mandarin
139
+
140
+
141
+ ## Russian
142
+
143
+ #### F5-TTS Base @ ru @ HotDro4illa
144
+ |Model|🤗Hugging Face|Data (Hours)|Model License|
145
+ |:---:|:------------:|:-----------:|:-------------:|
146
+ |F5-TTS Base|[ckpt & vocab](https://huggingface.co/hotstone228/F5-TTS-Russian)|[Common voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0)|cc-by-nc-4.0|
147
+
148
+ ```bash
149
+ Model: hf://hotstone228/F5-TTS-Russian/model_last.safetensors
150
+ Vocab: hf://hotstone228/F5-TTS-Russian/vocab.txt
151
+ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
152
+ ```
153
+ - Finetuned by [HotDro4illa](https://github.com/HotDro4illa)
154
+ - Any improvements are welcome
155
+
156
+
157
+ ## Spanish
158
+
159
+ #### F5-TTS Base @ es @ jpgallegoar
160
+ |Model|🤗Hugging Face|Data (Hours)|Model License|
161
+ |:---:|:------------:|:-----------:|:-------------:|
162
+ |F5-TTS Base|[ckpt & vocab](https://huggingface.co/jpgallegoar/F5-Spanish)|[Voxpopuli](https://huggingface.co/datasets/facebook/voxpopuli) & Crowdsourced & TEDx, 218 hours|cc0-1.0|
163
+
164
+ - @jpgallegoar [GitHub repo](https://github.com/jpgallegoar/Spanish-F5), Jupyter Notebook and Gradio usage for Spanish model.
F5-TTS/src/f5_tts/infer/examples/basic/basic.toml ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # F5-TTS | E2-TTS
2
+ model = "F5-TTS"
3
+ ref_audio = "infer/examples/basic/basic_ref_en.wav"
4
+ # If an empty "", transcribes the reference audio automatically.
5
+ ref_text = "Some call me nature, others call me mother nature."
6
+ gen_text = "I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring."
7
+ # File with text to generate. Ignores the text above.
8
+ gen_file = ""
9
+ remove_silence = false
10
+ output_dir = "tests"
11
+ output_file = "infer_cli_basic.wav"
F5-TTS/src/f5_tts/infer/examples/basic/basic_ref_en.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0e22048e72414fcc1e6b6342e47a774d748a195ed34e4a5b3fcf416707f2b71
3
+ size 256018
F5-TTS/src/f5_tts/infer/examples/basic/basic_ref_zh.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96724a113240d1f82c6ded1334122f0176b96c9226ccd3c919e625bcfd2a3ede
3
+ size 324558
F5-TTS/src/f5_tts/infer/examples/multi/country.flac ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb15708b4b3875e37beec46591a5d89e1a9a63fdad3b8fe4a5c8738f4f554400
3
+ size 180321
F5-TTS/src/f5_tts/infer/examples/multi/main.flac ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4abb1107771ce7e14926fde879b959dde6db6e572476b98684f04e45e978ab19
3
+ size 279219
F5-TTS/src/f5_tts/infer/examples/multi/story.toml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # F5-TTS | E2-TTS
2
+ model = "F5-TTS"
3
+ ref_audio = "infer/examples/multi/main.flac"
4
+ # If an empty "", transcribes the reference audio automatically.
5
+ ref_text = ""
6
+ gen_text = ""
7
+ # File with text to generate. Ignores the text above.
8
+ gen_file = "infer/examples/multi/story.txt"
9
+ remove_silence = true
10
+ output_dir = "tests"
11
+ output_file = "infer_cli_story.wav"
12
+
13
+ [voices.town]
14
+ ref_audio = "infer/examples/multi/town.flac"
15
+ ref_text = ""
16
+
17
+ [voices.country]
18
+ ref_audio = "infer/examples/multi/country.flac"
19
+ ref_text = ""
20
+
F5-TTS/src/f5_tts/infer/examples/multi/story.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ A Town Mouse and a Country Mouse were acquaintances, and the Country Mouse one day invited his friend to come and see him at his home in the fields. The Town Mouse came, and they sat down to a dinner of barleycorns and roots, the latter of which had a distinctly earthy flavour. The fare was not much to the taste of the guest, and presently he broke out with [town] “My poor dear friend, you live here no better than the ants. Now, you should just see how I fare! My larder is a regular horn of plenty. You must come and stay with me, and I promise you you shall live on the fat of the land.” [main] So when he returned to town he took the Country Mouse with him, and showed him into a larder containing flour and oatmeal and figs and honey and dates. The Country Mouse had never seen anything like it, and sat down to enjoy the luxuries his friend provided: but before they had well begun, the door of the larder opened and someone came in. The two Mice scampered off and hid themselves in a narrow and exceedingly uncomfortable hole. Presently, when all was quiet, they ventured out again; but someone else came in, and off they scuttled again. This was too much for the visitor. [country] “Goodbye,” [main] said he, [country] “I’m off. You live in the lap of luxury, I can see, but you are surrounded by dangers; whereas at home I can enjoy my simple dinner of roots and corn in peace.”
F5-TTS/src/f5_tts/infer/examples/multi/town.flac ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7d069b8ebd5180c3b30fde5d378f0a1ddac96722d62cf43537efc3c3f3a3ce8
3
+ size 229383
F5-TTS/src/f5_tts/infer/examples/vocab.txt ADDED
@@ -0,0 +1,2545 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ !
3
+ "
4
+ #
5
+ $
6
+ %
7
+ &
8
+ '
9
+ (
10
+ )
11
+ *
12
+ +
13
+ ,
14
+ -
15
+ .
16
+ /
17
+ 0
18
+ 1
19
+ 2
20
+ 3
21
+ 4
22
+ 5
23
+ 6
24
+ 7
25
+ 8
26
+ 9
27
+ :
28
+ ;
29
+ =
30
+ >
31
+ ?
32
+ @
33
+ A
34
+ B
35
+ C
36
+ D
37
+ E
38
+ F
39
+ G
40
+ H
41
+ I
42
+ J
43
+ K
44
+ L
45
+ M
46
+ N
47
+ O
48
+ P
49
+ Q
50
+ R
51
+ S
52
+ T
53
+ U
54
+ V
55
+ W
56
+ X
57
+ Y
58
+ Z
59
+ [
60
+ \
61
+ ]
62
+ _
63
+ a
64
+ a1
65
+ ai1
66
+ ai2
67
+ ai3
68
+ ai4
69
+ an1
70
+ an3
71
+ an4
72
+ ang1
73
+ ang2
74
+ ang4
75
+ ao1
76
+ ao2
77
+ ao3
78
+ ao4
79
+ b
80
+ ba
81
+ ba1
82
+ ba2
83
+ ba3
84
+ ba4
85
+ bai1
86
+ bai2
87
+ bai3
88
+ bai4
89
+ ban1
90
+ ban2
91
+ ban3
92
+ ban4
93
+ bang1
94
+ bang2
95
+ bang3
96
+ bang4
97
+ bao1
98
+ bao2
99
+ bao3
100
+ bao4
101
+ bei
102
+ bei1
103
+ bei2
104
+ bei3
105
+ bei4
106
+ ben1
107
+ ben2
108
+ ben3
109
+ ben4
110
+ beng
111
+ beng1
112
+ beng2
113
+ beng3
114
+ beng4
115
+ bi1
116
+ bi2
117
+ bi3
118
+ bi4
119
+ bian1
120
+ bian2
121
+ bian3
122
+ bian4
123
+ biao1
124
+ biao2
125
+ biao3
126
+ bie1
127
+ bie2
128
+ bie3
129
+ bie4
130
+ bin1
131
+ bin4
132
+ bing1
133
+ bing2
134
+ bing3
135
+ bing4
136
+ bo
137
+ bo1
138
+ bo2
139
+ bo3
140
+ bo4
141
+ bu2
142
+ bu3
143
+ bu4
144
+ c
145
+ ca1
146
+ cai1
147
+ cai2
148
+ cai3
149
+ cai4
150
+ can1
151
+ can2
152
+ can3
153
+ can4
154
+ cang1
155
+ cang2
156
+ cao1
157
+ cao2
158
+ cao3
159
+ ce4
160
+ cen1
161
+ cen2
162
+ ceng1
163
+ ceng2
164
+ ceng4
165
+ cha1
166
+ cha2
167
+ cha3
168
+ cha4
169
+ chai1
170
+ chai2
171
+ chan1
172
+ chan2
173
+ chan3
174
+ chan4
175
+ chang1
176
+ chang2
177
+ chang3
178
+ chang4
179
+ chao1
180
+ chao2
181
+ chao3
182
+ che1
183
+ che2
184
+ che3
185
+ che4
186
+ chen1
187
+ chen2
188
+ chen3
189
+ chen4
190
+ cheng1
191
+ cheng2
192
+ cheng3
193
+ cheng4
194
+ chi1
195
+ chi2
196
+ chi3
197
+ chi4
198
+ chong1
199
+ chong2
200
+ chong3
201
+ chong4
202
+ chou1
203
+ chou2
204
+ chou3
205
+ chou4
206
+ chu1
207
+ chu2
208
+ chu3
209
+ chu4
210
+ chua1
211
+ chuai1
212
+ chuai2
213
+ chuai3
214
+ chuai4
215
+ chuan1
216
+ chuan2
217
+ chuan3
218
+ chuan4
219
+ chuang1
220
+ chuang2
221
+ chuang3
222
+ chuang4
223
+ chui1
224
+ chui2
225
+ chun1
226
+ chun2
227
+ chun3
228
+ chuo1
229
+ chuo4
230
+ ci1
231
+ ci2
232
+ ci3
233
+ ci4
234
+ cong1
235
+ cong2
236
+ cou4
237
+ cu1
238
+ cu4
239
+ cuan1
240
+ cuan2
241
+ cuan4
242
+ cui1
243
+ cui3
244
+ cui4
245
+ cun1
246
+ cun2
247
+ cun4
248
+ cuo1
249
+ cuo2
250
+ cuo4
251
+ d
252
+ da
253
+ da1
254
+ da2
255
+ da3
256
+ da4
257
+ dai1
258
+ dai2
259
+ dai3
260
+ dai4
261
+ dan1
262
+ dan2
263
+ dan3
264
+ dan4
265
+ dang1
266
+ dang2
267
+ dang3
268
+ dang4
269
+ dao1
270
+ dao2
271
+ dao3
272
+ dao4
273
+ de
274
+ de1
275
+ de2
276
+ dei3
277
+ den4
278
+ deng1
279
+ deng2
280
+ deng3
281
+ deng4
282
+ di1
283
+ di2
284
+ di3
285
+ di4
286
+ dia3
287
+ dian1
288
+ dian2
289
+ dian3
290
+ dian4
291
+ diao1
292
+ diao3
293
+ diao4
294
+ die1
295
+ die2
296
+ die4
297
+ ding1
298
+ ding2
299
+ ding3
300
+ ding4
301
+ diu1
302
+ dong1
303
+ dong3
304
+ dong4
305
+ dou1
306
+ dou2
307
+ dou3
308
+ dou4
309
+ du1
310
+ du2
311
+ du3
312
+ du4
313
+ duan1
314
+ duan2
315
+ duan3
316
+ duan4
317
+ dui1
318
+ dui4
319
+ dun1
320
+ dun3
321
+ dun4
322
+ duo1
323
+ duo2
324
+ duo3
325
+ duo4
326
+ e
327
+ e1
328
+ e2
329
+ e3
330
+ e4
331
+ ei2
332
+ en1
333
+ en4
334
+ er
335
+ er2
336
+ er3
337
+ er4
338
+ f
339
+ fa1
340
+ fa2
341
+ fa3
342
+ fa4
343
+ fan1
344
+ fan2
345
+ fan3
346
+ fan4
347
+ fang1
348
+ fang2
349
+ fang3
350
+ fang4
351
+ fei1
352
+ fei2
353
+ fei3
354
+ fei4
355
+ fen1
356
+ fen2
357
+ fen3
358
+ fen4
359
+ feng1
360
+ feng2
361
+ feng3
362
+ feng4
363
+ fo2
364
+ fou2
365
+ fou3
366
+ fu1
367
+ fu2
368
+ fu3
369
+ fu4
370
+ g
371
+ ga1
372
+ ga2
373
+ ga3
374
+ ga4
375
+ gai1
376
+ gai2
377
+ gai3
378
+ gai4
379
+ gan1
380
+ gan2
381
+ gan3
382
+ gan4
383
+ gang1
384
+ gang2
385
+ gang3
386
+ gang4
387
+ gao1
388
+ gao2
389
+ gao3
390
+ gao4
391
+ ge1
392
+ ge2
393
+ ge3
394
+ ge4
395
+ gei2
396
+ gei3
397
+ gen1
398
+ gen2
399
+ gen3
400
+ gen4
401
+ geng1
402
+ geng3
403
+ geng4
404
+ gong1
405
+ gong3
406
+ gong4
407
+ gou1
408
+ gou2
409
+ gou3
410
+ gou4
411
+ gu
412
+ gu1
413
+ gu2
414
+ gu3
415
+ gu4
416
+ gua1
417
+ gua2
418
+ gua3
419
+ gua4
420
+ guai1
421
+ guai2
422
+ guai3
423
+ guai4
424
+ guan1
425
+ guan2
426
+ guan3
427
+ guan4
428
+ guang1
429
+ guang2
430
+ guang3
431
+ guang4
432
+ gui1
433
+ gui2
434
+ gui3
435
+ gui4
436
+ gun3
437
+ gun4
438
+ guo1
439
+ guo2
440
+ guo3
441
+ guo4
442
+ h
443
+ ha1
444
+ ha2
445
+ ha3
446
+ hai1
447
+ hai2
448
+ hai3
449
+ hai4
450
+ han1
451
+ han2
452
+ han3
453
+ han4
454
+ hang1
455
+ hang2
456
+ hang4
457
+ hao1
458
+ hao2
459
+ hao3
460
+ hao4
461
+ he1
462
+ he2
463
+ he4
464
+ hei1
465
+ hen2
466
+ hen3
467
+ hen4
468
+ heng1
469
+ heng2
470
+ heng4
471
+ hong1
472
+ hong2
473
+ hong3
474
+ hong4
475
+ hou1
476
+ hou2
477
+ hou3
478
+ hou4
479
+ hu1
480
+ hu2
481
+ hu3
482
+ hu4
483
+ hua1
484
+ hua2
485
+ hua4
486
+ huai2
487
+ huai4
488
+ huan1
489
+ huan2
490
+ huan3
491
+ huan4
492
+ huang1
493
+ huang2
494
+ huang3
495
+ huang4
496
+ hui1
497
+ hui2
498
+ hui3
499
+ hui4
500
+ hun1
501
+ hun2
502
+ hun4
503
+ huo
504
+ huo1
505
+ huo2
506
+ huo3
507
+ huo4
508
+ i
509
+ j
510
+ ji1
511
+ ji2
512
+ ji3
513
+ ji4
514
+ jia
515
+ jia1
516
+ jia2
517
+ jia3
518
+ jia4
519
+ jian1
520
+ jian2
521
+ jian3
522
+ jian4
523
+ jiang1
524
+ jiang2
525
+ jiang3
526
+ jiang4
527
+ jiao1
528
+ jiao2
529
+ jiao3
530
+ jiao4
531
+ jie1
532
+ jie2
533
+ jie3
534
+ jie4
535
+ jin1
536
+ jin2
537
+ jin3
538
+ jin4
539
+ jing1
540
+ jing2
541
+ jing3
542
+ jing4
543
+ jiong3
544
+ jiu1
545
+ jiu2
546
+ jiu3
547
+ jiu4
548
+ ju1
549
+ ju2
550
+ ju3
551
+ ju4
552
+ juan1
553
+ juan2
554
+ juan3
555
+ juan4
556
+ jue1
557
+ jue2
558
+ jue4
559
+ jun1
560
+ jun4
561
+ k
562
+ ka1
563
+ ka2
564
+ ka3
565
+ kai1
566
+ kai2
567
+ kai3
568
+ kai4
569
+ kan1
570
+ kan2
571
+ kan3
572
+ kan4
573
+ kang1
574
+ kang2
575
+ kang4
576
+ kao1
577
+ kao2
578
+ kao3
579
+ kao4
580
+ ke1
581
+ ke2
582
+ ke3
583
+ ke4
584
+ ken3
585
+ keng1
586
+ kong1
587
+ kong3
588
+ kong4
589
+ kou1
590
+ kou2
591
+ kou3
592
+ kou4
593
+ ku1
594
+ ku2
595
+ ku3
596
+ ku4
597
+ kua1
598
+ kua3
599
+ kua4
600
+ kuai3
601
+ kuai4
602
+ kuan1
603
+ kuan2
604
+ kuan3
605
+ kuang1
606
+ kuang2
607
+ kuang4
608
+ kui1
609
+ kui2
610
+ kui3
611
+ kui4
612
+ kun1
613
+ kun3
614
+ kun4
615
+ kuo4
616
+ l
617
+ la
618
+ la1
619
+ la2
620
+ la3
621
+ la4
622
+ lai2
623
+ lai4
624
+ lan2
625
+ lan3
626
+ lan4
627
+ lang1
628
+ lang2
629
+ lang3
630
+ lang4
631
+ lao1
632
+ lao2
633
+ lao3
634
+ lao4
635
+ le
636
+ le1
637
+ le4
638
+ lei
639
+ lei1
640
+ lei2
641
+ lei3
642
+ lei4
643
+ leng1
644
+ leng2
645
+ leng3
646
+ leng4
647
+ li
648
+ li1
649
+ li2
650
+ li3
651
+ li4
652
+ lia3
653
+ lian2
654
+ lian3
655
+ lian4
656
+ liang2
657
+ liang3
658
+ liang4
659
+ liao1
660
+ liao2
661
+ liao3
662
+ liao4
663
+ lie1
664
+ lie2
665
+ lie3
666
+ lie4
667
+ lin1
668
+ lin2
669
+ lin3
670
+ lin4
671
+ ling2
672
+ ling3
673
+ ling4
674
+ liu1
675
+ liu2
676
+ liu3
677
+ liu4
678
+ long1
679
+ long2
680
+ long3
681
+ long4
682
+ lou1
683
+ lou2
684
+ lou3
685
+ lou4
686
+ lu1
687
+ lu2
688
+ lu3
689
+ lu4
690
+ luan2
691
+ luan3
692
+ luan4
693
+ lun1
694
+ lun2
695
+ lun4
696
+ luo1
697
+ luo2
698
+ luo3
699
+ luo4
700
+ lv2
701
+ lv3
702
+ lv4
703
+ lve3
704
+ lve4
705
+ m
706
+ ma
707
+ ma1
708
+ ma2
709
+ ma3
710
+ ma4
711
+ mai2
712
+ mai3
713
+ mai4
714
+ man1
715
+ man2
716
+ man3
717
+ man4
718
+ mang2
719
+ mang3
720
+ mao1
721
+ mao2
722
+ mao3
723
+ mao4
724
+ me
725
+ mei2
726
+ mei3
727
+ mei4
728
+ men
729
+ men1
730
+ men2
731
+ men4
732
+ meng
733
+ meng1
734
+ meng2
735
+ meng3
736
+ meng4
737
+ mi1
738
+ mi2
739
+ mi3
740
+ mi4
741
+ mian2
742
+ mian3
743
+ mian4
744
+ miao1
745
+ miao2
746
+ miao3
747
+ miao4
748
+ mie1
749
+ mie4
750
+ min2
751
+ min3
752
+ ming2
753
+ ming3
754
+ ming4
755
+ miu4
756
+ mo1
757
+ mo2
758
+ mo3
759
+ mo4
760
+ mou1
761
+ mou2
762
+ mou3
763
+ mu2
764
+ mu3
765
+ mu4
766
+ n
767
+ n2
768
+ na1
769
+ na2
770
+ na3
771
+ na4
772
+ nai2
773
+ nai3
774
+ nai4
775
+ nan1
776
+ nan2
777
+ nan3
778
+ nan4
779
+ nang1
780
+ nang2
781
+ nang3
782
+ nao1
783
+ nao2
784
+ nao3
785
+ nao4
786
+ ne
787
+ ne2
788
+ ne4
789
+ nei3
790
+ nei4
791
+ nen4
792
+ neng2
793
+ ni1
794
+ ni2
795
+ ni3
796
+ ni4
797
+ nian1
798
+ nian2
799
+ nian3
800
+ nian4
801
+ niang2
802
+ niang4
803
+ niao2
804
+ niao3
805
+ niao4
806
+ nie1
807
+ nie4
808
+ nin2
809
+ ning2
810
+ ning3
811
+ ning4
812
+ niu1
813
+ niu2
814
+ niu3
815
+ niu4
816
+ nong2
817
+ nong4
818
+ nou4
819
+ nu2
820
+ nu3
821
+ nu4
822
+ nuan3
823
+ nuo2
824
+ nuo4
825
+ nv2
826
+ nv3
827
+ nve4
828
+ o
829
+ o1
830
+ o2
831
+ ou1
832
+ ou2
833
+ ou3
834
+ ou4
835
+ p
836
+ pa1
837
+ pa2
838
+ pa4
839
+ pai1
840
+ pai2
841
+ pai3
842
+ pai4
843
+ pan1
844
+ pan2
845
+ pan4
846
+ pang1
847
+ pang2
848
+ pang4
849
+ pao1
850
+ pao2
851
+ pao3
852
+ pao4
853
+ pei1
854
+ pei2
855
+ pei4
856
+ pen1
857
+ pen2
858
+ pen4
859
+ peng1
860
+ peng2
861
+ peng3
862
+ peng4
863
+ pi1
864
+ pi2
865
+ pi3
866
+ pi4
867
+ pian1
868
+ pian2
869
+ pian4
870
+ piao1
871
+ piao2
872
+ piao3
873
+ piao4
874
+ pie1
875
+ pie2
876
+ pie3
877
+ pin1
878
+ pin2
879
+ pin3
880
+ pin4
881
+ ping1
882
+ ping2
883
+ po1
884
+ po2
885
+ po3
886
+ po4
887
+ pou1
888
+ pu1
889
+ pu2
890
+ pu3
891
+ pu4
892
+ q
893
+ qi1
894
+ qi2
895
+ qi3
896
+ qi4
897
+ qia1
898
+ qia3
899
+ qia4
900
+ qian1
901
+ qian2
902
+ qian3
903
+ qian4
904
+ qiang1
905
+ qiang2
906
+ qiang3
907
+ qiang4
908
+ qiao1
909
+ qiao2
910
+ qiao3
911
+ qiao4
912
+ qie1
913
+ qie2
914
+ qie3
915
+ qie4
916
+ qin1
917
+ qin2
918
+ qin3
919
+ qin4
920
+ qing1
921
+ qing2
922
+ qing3
923
+ qing4
924
+ qiong1
925
+ qiong2
926
+ qiu1
927
+ qiu2
928
+ qiu3
929
+ qu1
930
+ qu2
931
+ qu3
932
+ qu4
933
+ quan1
934
+ quan2
935
+ quan3
936
+ quan4
937
+ que1
938
+ que2
939
+ que4
940
+ qun2
941
+ r
942
+ ran2
943
+ ran3
944
+ rang1
945
+ rang2
946
+ rang3
947
+ rang4
948
+ rao2
949
+ rao3
950
+ rao4
951
+ re2
952
+ re3
953
+ re4
954
+ ren2
955
+ ren3
956
+ ren4
957
+ reng1
958
+ reng2
959
+ ri4
960
+ rong1
961
+ rong2
962
+ rong3
963
+ rou2
964
+ rou4
965
+ ru2
966
+ ru3
967
+ ru4
968
+ ruan2
969
+ ruan3
970
+ rui3
971
+ rui4
972
+ run4
973
+ ruo4
974
+ s
975
+ sa1
976
+ sa2
977
+ sa3
978
+ sa4
979
+ sai1
980
+ sai4
981
+ san1
982
+ san2
983
+ san3
984
+ san4
985
+ sang1
986
+ sang3
987
+ sang4
988
+ sao1
989
+ sao2
990
+ sao3
991
+ sao4
992
+ se4
993
+ sen1
994
+ seng1
995
+ sha1
996
+ sha2
997
+ sha3
998
+ sha4
999
+ shai1
1000
+ shai2
1001
+ shai3
1002
+ shai4
1003
+ shan1
1004
+ shan3
1005
+ shan4
1006
+ shang
1007
+ shang1
1008
+ shang3
1009
+ shang4
1010
+ shao1
1011
+ shao2
1012
+ shao3
1013
+ shao4
1014
+ she1
1015
+ she2
1016
+ she3
1017
+ she4
1018
+ shei2
1019
+ shen1
1020
+ shen2
1021
+ shen3
1022
+ shen4
1023
+ sheng1
1024
+ sheng2
1025
+ sheng3
1026
+ sheng4
1027
+ shi
1028
+ shi1
1029
+ shi2
1030
+ shi3
1031
+ shi4
1032
+ shou1
1033
+ shou2
1034
+ shou3
1035
+ shou4
1036
+ shu1
1037
+ shu2
1038
+ shu3
1039
+ shu4
1040
+ shua1
1041
+ shua2
1042
+ shua3
1043
+ shua4
1044
+ shuai1
1045
+ shuai3
1046
+ shuai4
1047
+ shuan1
1048
+ shuan4
1049
+ shuang1
1050
+ shuang3
1051
+ shui2
1052
+ shui3
1053
+ shui4
1054
+ shun3
1055
+ shun4
1056
+ shuo1
1057
+ shuo4
1058
+ si1
1059
+ si2
1060
+ si3
1061
+ si4
1062
+ song1
1063
+ song3
1064
+ song4
1065
+ sou1
1066
+ sou3
1067
+ sou4
1068
+ su1
1069
+ su2
1070
+ su4
1071
+ suan1
1072
+ suan4
1073
+ sui1
1074
+ sui2
1075
+ sui3
1076
+ sui4
1077
+ sun1
1078
+ sun3
1079
+ suo
1080
+ suo1
1081
+ suo2
1082
+ suo3
1083
+ t
1084
+ ta1
1085
+ ta2
1086
+ ta3
1087
+ ta4
1088
+ tai1
1089
+ tai2
1090
+ tai4
1091
+ tan1
1092
+ tan2
1093
+ tan3
1094
+ tan4
1095
+ tang1
1096
+ tang2
1097
+ tang3
1098
+ tang4
1099
+ tao1
1100
+ tao2
1101
+ tao3
1102
+ tao4
1103
+ te4
1104
+ teng2
1105
+ ti1
1106
+ ti2
1107
+ ti3
1108
+ ti4
1109
+ tian1
1110
+ tian2
1111
+ tian3
1112
+ tiao1
1113
+ tiao2
1114
+ tiao3
1115
+ tiao4
1116
+ tie1
1117
+ tie2
1118
+ tie3
1119
+ tie4
1120
+ ting1
1121
+ ting2
1122
+ ting3
1123
+ tong1
1124
+ tong2
1125
+ tong3
1126
+ tong4
1127
+ tou
1128
+ tou1
1129
+ tou2
1130
+ tou4
1131
+ tu1
1132
+ tu2
1133
+ tu3
1134
+ tu4
1135
+ tuan1
1136
+ tuan2
1137
+ tui1
1138
+ tui2
1139
+ tui3
1140
+ tui4
1141
+ tun1
1142
+ tun2
1143
+ tun4
1144
+ tuo1
1145
+ tuo2
1146
+ tuo3
1147
+ tuo4
1148
+ u
1149
+ v
1150
+ w
1151
+ wa
1152
+ wa1
1153
+ wa2
1154
+ wa3
1155
+ wa4
1156
+ wai1
1157
+ wai3
1158
+ wai4
1159
+ wan1
1160
+ wan2
1161
+ wan3
1162
+ wan4
1163
+ wang1
1164
+ wang2
1165
+ wang3
1166
+ wang4
1167
+ wei1
1168
+ wei2
1169
+ wei3
1170
+ wei4
1171
+ wen1
1172
+ wen2
1173
+ wen3
1174
+ wen4
1175
+ weng1
1176
+ weng4
1177
+ wo1
1178
+ wo2
1179
+ wo3
1180
+ wo4
1181
+ wu1
1182
+ wu2
1183
+ wu3
1184
+ wu4
1185
+ x
1186
+ xi1
1187
+ xi2
1188
+ xi3
1189
+ xi4
1190
+ xia1
1191
+ xia2
1192
+ xia4
1193
+ xian1
1194
+ xian2
1195
+ xian3
1196
+ xian4
1197
+ xiang1
1198
+ xiang2
1199
+ xiang3
1200
+ xiang4
1201
+ xiao1
1202
+ xiao2
1203
+ xiao3
1204
+ xiao4
1205
+ xie1
1206
+ xie2
1207
+ xie3
1208
+ xie4
1209
+ xin1
1210
+ xin2
1211
+ xin4
1212
+ xing1
1213
+ xing2
1214
+ xing3
1215
+ xing4
1216
+ xiong1
1217
+ xiong2
1218
+ xiu1
1219
+ xiu3
1220
+ xiu4
1221
+ xu
1222
+ xu1
1223
+ xu2
1224
+ xu3
1225
+ xu4
1226
+ xuan1
1227
+ xuan2
1228
+ xuan3
1229
+ xuan4
1230
+ xue1
1231
+ xue2
1232
+ xue3
1233
+ xue4
1234
+ xun1
1235
+ xun2
1236
+ xun4
1237
+ y
1238
+ ya
1239
+ ya1
1240
+ ya2
1241
+ ya3
1242
+ ya4
1243
+ yan1
1244
+ yan2
1245
+ yan3
1246
+ yan4
1247
+ yang1
1248
+ yang2
1249
+ yang3
1250
+ yang4
1251
+ yao1
1252
+ yao2
1253
+ yao3
1254
+ yao4
1255
+ ye1
1256
+ ye2
1257
+ ye3
1258
+ ye4
1259
+ yi
1260
+ yi1
1261
+ yi2
1262
+ yi3
1263
+ yi4
1264
+ yin1
1265
+ yin2
1266
+ yin3
1267
+ yin4
1268
+ ying1
1269
+ ying2
1270
+ ying3
1271
+ ying4
1272
+ yo1
1273
+ yong1
1274
+ yong2
1275
+ yong3
1276
+ yong4
1277
+ you1
1278
+ you2
1279
+ you3
1280
+ you4
1281
+ yu1
1282
+ yu2
1283
+ yu3
1284
+ yu4
1285
+ yuan1
1286
+ yuan2
1287
+ yuan3
1288
+ yuan4
1289
+ yue1
1290
+ yue4
1291
+ yun1
1292
+ yun2
1293
+ yun3
1294
+ yun4
1295
+ z
1296
+ za1
1297
+ za2
1298
+ za3
1299
+ zai1
1300
+ zai3
1301
+ zai4
1302
+ zan1
1303
+ zan2
1304
+ zan3
1305
+ zan4
1306
+ zang1
1307
+ zang4
1308
+ zao1
1309
+ zao2
1310
+ zao3
1311
+ zao4
1312
+ ze2
1313
+ ze4
1314
+ zei2
1315
+ zen3
1316
+ zeng1
1317
+ zeng4
1318
+ zha1
1319
+ zha2
1320
+ zha3
1321
+ zha4
1322
+ zhai1
1323
+ zhai2
1324
+ zhai3
1325
+ zhai4
1326
+ zhan1
1327
+ zhan2
1328
+ zhan3
1329
+ zhan4
1330
+ zhang1
1331
+ zhang2
1332
+ zhang3
1333
+ zhang4
1334
+ zhao1
1335
+ zhao2
1336
+ zhao3
1337
+ zhao4
1338
+ zhe
1339
+ zhe1
1340
+ zhe2
1341
+ zhe3
1342
+ zhe4
1343
+ zhen1
1344
+ zhen2
1345
+ zhen3
1346
+ zhen4
1347
+ zheng1
1348
+ zheng2
1349
+ zheng3
1350
+ zheng4
1351
+ zhi1
1352
+ zhi2
1353
+ zhi3
1354
+ zhi4
1355
+ zhong1
1356
+ zhong2
1357
+ zhong3
1358
+ zhong4
1359
+ zhou1
1360
+ zhou2
1361
+ zhou3
1362
+ zhou4
1363
+ zhu1
1364
+ zhu2
1365
+ zhu3
1366
+ zhu4
1367
+ zhua1
1368
+ zhua2
1369
+ zhua3
1370
+ zhuai1
1371
+ zhuai3
1372
+ zhuai4
1373
+ zhuan1
1374
+ zhuan2
1375
+ zhuan3
1376
+ zhuan4
1377
+ zhuang1
1378
+ zhuang4
1379
+ zhui1
1380
+ zhui4
1381
+ zhun1
1382
+ zhun2
1383
+ zhun3
1384
+ zhuo1
1385
+ zhuo2
1386
+ zi
1387
+ zi1
1388
+ zi2
1389
+ zi3
1390
+ zi4
1391
+ zong1
1392
+ zong2
1393
+ zong3
1394
+ zong4
1395
+ zou1
1396
+ zou2
1397
+ zou3
1398
+ zou4
1399
+ zu1
1400
+ zu2
1401
+ zu3
1402
+ zuan1
1403
+ zuan3
1404
+ zuan4
1405
+ zui2
1406
+ zui3
1407
+ zui4
1408
+ zun1
1409
+ zuo
1410
+ zuo1
1411
+ zuo2
1412
+ zuo3
1413
+ zuo4
1414
+ {
1415
+ ~
1416
+ ¡
1417
+ ¢
1418
+ £
1419
+ ¥
1420
+ §
1421
+ ¨
1422
+ ©
1423
+ «
1424
+ ®
1425
+ ¯
1426
+ °
1427
+ ±
1428
+ ²
1429
+ ³
1430
+ ´
1431
+ µ
1432
+ ·
1433
+ ¹
1434
+ º
1435
+ »
1436
+ ¼
1437
+ ½
1438
+ ¾
1439
+ ¿
1440
+ À
1441
+ Á
1442
+ Â
1443
+ Ã
1444
+ Ä
1445
+ Å
1446
+ Æ
1447
+ Ç
1448
+ È
1449
+ É
1450
+ Ê
1451
+ Í
1452
+ Î
1453
+ Ñ
1454
+ Ó
1455
+ Ö
1456
+ ×
1457
+ Ø
1458
+ Ú
1459
+ Ü
1460
+ Ý
1461
+ Þ
1462
+ ß
1463
+ à
1464
+ á
1465
+ â
1466
+ ã
1467
+ ä
1468
+ å
1469
+ æ
1470
+ ç
1471
+ è
1472
+ é
1473
+ ê
1474
+ ë
1475
+ ì
1476
+ í
1477
+ î
1478
+ ï
1479
+ ð
1480
+ ñ
1481
+ ò
1482
+ ó
1483
+ ô
1484
+ õ
1485
+ ö
1486
+ ø
1487
+ ù
1488
+ ú
1489
+ û
1490
+ ü
1491
+ ý
1492
+ Ā
1493
+ ā
1494
+ ă
1495
+ ą
1496
+ ć
1497
+ Č
1498
+ č
1499
+ Đ
1500
+ đ
1501
+ ē
1502
+ ė
1503
+ ę
1504
+ ě
1505
+ ĝ
1506
+ ğ
1507
+ ħ
1508
+ ī
1509
+ į
1510
+ İ
1511
+ ı
1512
+ Ł
1513
+ ł
1514
+ ń
1515
+ ņ
1516
+ ň
1517
+ ŋ
1518
+ Ō
1519
+ ō
1520
+ ő
1521
+ œ
1522
+ ř
1523
+ Ś
1524
+ ś
1525
+ Ş
1526
+ ş
1527
+ Š
1528
+ š
1529
+ Ť
1530
+ ť
1531
+ ũ
1532
+ ū
1533
+ ź
1534
+ Ż
1535
+ ż
1536
+ Ž
1537
+ ž
1538
+ ơ
1539
+ ư
1540
+ ǎ
1541
+ ǐ
1542
+ ǒ
1543
+ ǔ
1544
+ ǚ
1545
+ ș
1546
+ ț
1547
+ ɑ
1548
+ ɔ
1549
+ ɕ
1550
+ ə
1551
+ ɛ
1552
+ ɜ
1553
+ ɡ
1554
+ ɣ
1555
+ ɪ
1556
+ ɫ
1557
+ ɴ
1558
+ ɹ
1559
+ ɾ
1560
+ ʃ
1561
+ ʊ
1562
+ ʌ
1563
+ ʒ
1564
+ ʔ
1565
+ ʰ
1566
+ ʷ
1567
+ ʻ
1568
+ ʾ
1569
+ ʿ
1570
+ ˈ
1571
+ ː
1572
+ ˙
1573
+ ˜
1574
+ ˢ
1575
+ ́
1576
+ ̅
1577
+ Α
1578
+ Β
1579
+ Δ
1580
+ Ε
1581
+ Θ
1582
+ Κ
1583
+ Λ
1584
+ Μ
1585
+ Ξ
1586
+ Π
1587
+ Σ
1588
+ Τ
1589
+ Φ
1590
+ Χ
1591
+ Ψ
1592
+ Ω
1593
+ ά
1594
+ έ
1595
+ ή
1596
+ ί
1597
+ α
1598
+ β
1599
+ γ
1600
+ δ
1601
+ ε
1602
+ ζ
1603
+ η
1604
+ θ
1605
+ ι
1606
+ κ
1607
+ λ
1608
+ μ
1609
+ ν
1610
+ ξ
1611
+ ο
1612
+ π
1613
+ ρ
1614
+ ς
1615
+ σ
1616
+ τ
1617
+ υ
1618
+ φ
1619
+ χ
1620
+ ψ
1621
+ ω
1622
+ ϊ
1623
+ ό
1624
+ ύ
1625
+ ώ
1626
+ ϕ
1627
+ ϵ
1628
+ Ё
1629
+ А
1630
+ Б
1631
+ В
1632
+ Г
1633
+ Д
1634
+ Е
1635
+ Ж
1636
+ З
1637
+ И
1638
+ Й
1639
+ К
1640
+ Л
1641
+ М
1642
+ Н
1643
+ О
1644
+ П
1645
+ Р
1646
+ С
1647
+ Т
1648
+ У
1649
+ Ф
1650
+ Х
1651
+ Ц
1652
+ Ч
1653
+ Ш
1654
+ Щ
1655
+ Ы
1656
+ Ь
1657
+ Э
1658
+ Ю
1659
+ Я
1660
+ а
1661
+ б
1662
+ в
1663
+ г
1664
+ д
1665
+ е
1666
+ ж
1667
+ з
1668
+ и
1669
+ й
1670
+ к
1671
+ л
1672
+ м
1673
+ н
1674
+ о
1675
+ п
1676
+ р
1677
+ с
1678
+ т
1679
+ у
1680
+ ф
1681
+ х
1682
+ ц
1683
+ ч
1684
+ ш
1685
+ щ
1686
+ ъ
1687
+ ы
1688
+ ь
1689
+ э
1690
+ ю
1691
+ я
1692
+ ё
1693
+ і
1694
+ ְ
1695
+ ִ
1696
+ ֵ
1697
+ ֶ
1698
+ ַ
1699
+ ָ
1700
+ ֹ
1701
+ ּ
1702
+ ־
1703
+ ׁ
1704
+ א
1705
+ ב
1706
+ ג
1707
+ ד
1708
+ ה
1709
+ ו
1710
+ ז
1711
+ ח
1712
+ ט
1713
+ י
1714
+ כ
1715
+ ל
1716
+ ם
1717
+ מ
1718
+ ן
1719
+ נ
1720
+ ס
1721
+ ע
1722
+ פ
1723
+ ק
1724
+ ר
1725
+ ש
1726
+ ת
1727
+ أ
1728
+ ب
1729
+ ة
1730
+ ت
1731
+ ج
1732
+ ح
1733
+ د
1734
+ ر
1735
+ ز
1736
+ س
1737
+ ص
1738
+ ط
1739
+ ع
1740
+ ق
1741
+ ك
1742
+ ل
1743
+ م
1744
+ ن
1745
+ ه
1746
+ و
1747
+ ي
1748
+ َ
1749
+ ُ
1750
+ ِ
1751
+ ْ
1752
+
1753
+
1754
+
1755
+
1756
+
1757
+
1758
+
1759
+
1760
+
1761
+
1762
+
1763
+
1764
+
1765
+
1766
+
1767
+
1768
+
1769
+
1770
+
1771
+
1772
+
1773
+
1774
+
1775
+
1776
+
1777
+
1778
+
1779
+
1780
+
1781
+
1782
+
1783
+
1784
+
1785
+
1786
+
1787
+
1788
+
1789
+
1790
+
1791
+
1792
+
1793
+
1794
+
1795
+
1796
+
1797
+
1798
+
1799
+
1800
+ ế
1801
+
1802
+
1803
+
1804
+
1805
+
1806
+
1807
+
1808
+
1809
+
1810
+
1811
+
1812
+
1813
+
1814
+
1815
+
1816
+
1817
+
1818
+
1819
+
1820
+
1821
+
1822
+
1823
+
1824
+
1825
+
1826
+
1827
+
1828
+
1829
+
1830
+
1831
+
1832
+
1833
+
1834
+
1835
+
1836
+
1837
+
1838
+
1839
+
1840
+
1841
+
1842
+
1843
+
1844
+
1845
+
1846
+
1847
+
1848
+
1849
+
1850
+
1851
+
1852
+
1853
+
1854
+
1855
+
1856
+
1857
+
1858
+
1859
+
1860
+
1861
+
1862
+
1863
+
1864
+
1865
+
1866
+
1867
+
1868
+
1869
+
1870
+
1871
+
1872
+
1873
+
1874
+
1875
+
1876
+
1877
+
1878
+
1879
+
1880
+
1881
+
1882
+
1883
+
1884
+
1885
+
1886
+
1887
+
1888
+
1889
+
1890
+
1891
+
1892
+
1893
+
1894
+
1895
+
1896
+
1897
+
1898
+
1899
+
1900
+
1901
+
1902
+
1903
+
1904
+
1905
+
1906
+
1907
+
1908
+
1909
+
1910
+
1911
+
1912
+
1913
+
1914
+
1915
+
1916
+
1917
+
1918
+
1919
+
1920
+
1921
+
1922
+
1923
+
1924
+
1925
+
1926
+
1927
+
1928
+
1929
+
1930
+
1931
+
1932
+
1933
+
1934
+
1935
+
1936
+
1937
+
1938
+
1939
+
1940
+
1941
+
1942
+
1943
+
1944
+
1945
+
1946
+
1947
+
1948
+
1949
+
1950
+
1951
+
1952
+
1953
+
1954
+
1955
+
1956
+
1957
+
1958
+
1959
+
1960
+
1961
+
1962
+
1963
+
1964
+
1965
+
1966
+
1967
+
1968
+
1969
+
1970
+
1971
+
1972
+
1973
+
1974
+
1975
+
1976
+
1977
+
1978
+
1979
+
1980
+
1981
+
1982
+
1983
+
1984
+
1985
+
1986
+
1987
+
1988
+
1989
+
1990
+
1991
+
1992
+
1993
+
1994
+
1995
+
1996
+
1997
+
1998
+
1999
+
2000
+
2001
+
2002
+
2003
+
2004
+
2005
+
2006
+
2007
+
2008
+
2009
+
2010
+
2011
+
2012
+
2013
+
2014
+
2015
+
2016
+
2017
+
2018
+
2019
+
2020
+
2021
+
2022
+
2023
+
2024
+
2025
+
2026
+
2027
+
2028
+
2029
+
2030
+
2031
+
2032
+
2033
+
2034
+
2035
+
2036
+
2037
+
2038
+
2039
+
2040
+
2041
+
2042
+
2043
+
2044
+
2045
+
2046
+
2047
+
2048
+
2049
+
2050
+
2051
+
2052
+
2053
+
2054
+
2055
+
2056
+
2057
+
2058
+
2059
+
2060
+
2061
+
2062
+
2063
+
2064
+
2065
+
2066
+
2067
+
2068
+
2069
+
2070
+
2071
+
2072
+
2073
+
2074
+
2075
+
2076
+
2077
+
2078
+
2079
+
2080
+
2081
+
2082
+
2083
+
2084
+
2085
+
2086
+
2087
+
2088
+
2089
+
2090
+
2091
+
2092
+
2093
+
2094
+
2095
+
2096
+
2097
+
2098
+
2099
+
2100
+
2101
+
2102
+
2103
+
2104
+
2105
+
2106
+
2107
+
2108
+
2109
+
2110
+
2111
+
2112
+
2113
+
2114
+
2115
+
2116
+
2117
+
2118
+
2119
+
2120
+
2121
+
2122
+
2123
+
2124
+
2125
+
2126
+
2127
+
2128
+
2129
+
2130
+
2131
+
2132
+
2133
+
2134
+
2135
+
2136
+
2137
+
2138
+
2139
+
2140
+
2141
+
2142
+
2143
+
2144
+
2145
+
2146
+
2147
+
2148
+
2149
+
2150
+
2151
+
2152
+
2153
+
2154
+
2155
+
2156
+
2157
+
2158
+
2159
+
2160
+
2161
+
2162
+
2163
+
2164
+
2165
+
2166
+
2167
+
2168
+
2169
+
2170
+
2171
+
2172
+
2173
+
2174
+
2175
+
2176
+
2177
+
2178
+
2179
+
2180
+
2181
+
2182
+
2183
+
2184
+
2185
+
2186
+
2187
+
2188
+
2189
+
2190
+
2191
+
2192
+
2193
+
2194
+
2195
+
2196
+
2197
+
2198
+
2199
+
2200
+
2201
+
2202
+
2203
+
2204
+
2205
+
2206
+
2207
+
2208
+
2209
+
2210
+
2211
+
2212
+
2213
+
2214
+
2215
+
2216
+
2217
+
2218
+
2219
+
2220
+
2221
+
2222
+
2223
+
2224
+
2225
+
2226
+
2227
+
2228
+
2229
+
2230
+
2231
+
2232
+
2233
+
2234
+
2235
+
2236
+
2237
+
2238
+
2239
+
2240
+
2241
+
2242
+
2243
+
2244
+
2245
+
2246
+
2247
+
2248
+
2249
+
2250
+
2251
+
2252
+
2253
+
2254
+
2255
+
2256
+
2257
+
2258
+
2259
+
2260
+
2261
+
2262
+
2263
+
2264
+
2265
+
2266
+
2267
+
2268
+
2269
+
2270
+
2271
+
2272
+
2273
+
2274
+
2275
+
2276
+
2277
+
2278
+
2279
+
2280
+
2281
+
2282
+
2283
+
2284
+
2285
+
2286
+
2287
+
2288
+
2289
+
2290
+
2291
+
2292
+
2293
+
2294
+
2295
+
2296
+
2297
+
2298
+
2299
+
2300
+
2301
+
2302
+
2303
+
2304
+
2305
+
2306
+
2307
+
2308
+
2309
+
2310
+
2311
+
2312
+
2313
+
2314
+
2315
+
2316
+
2317
+
2318
+
2319
+
2320
+
2321
+
2322
+
2323
+
2324
+
2325
+
2326
+
2327
+
2328
+
2329
+
2330
+
2331
+
2332
+
2333
+
2334
+
2335
+
2336
+
2337
+
2338
+
2339
+
2340
+
2341
+
2342
+
2343
+
2344
+
2345
+
2346
+
2347
+
2348
+
2349
+
2350
+
2351
+
2352
+
2353
+
2354
+
2355
+
2356
+
2357
+
2358
+
2359
+
2360
+
2361
+
2362
+
2363
+
2364
+
2365
+
2366
+
2367
+
2368
+
2369
+
2370
+
2371
+
2372
+
2373
+
2374
+
2375
+
2376
+
2377
+
2378
+
2379
+
2380
+
2381
+
2382
+
2383
+
2384
+
2385
+
2386
+
2387
+
2388
+
2389
+
2390
+
2391
+
2392
+
2393
+
2394
+
2395
+
2396
+
2397
+
2398
+
2399
+
2400
+
2401
+
2402
+
2403
+
2404
+
2405
+
2406
+
2407
+
2408
+
2409
+
2410
+
2411
+
2412
+
2413
+
2414
+
2415
+
2416
+
2417
+
2418
+
2419
+
2420
+
2421
+
2422
+
2423
+
2424
+
2425
+
2426
+
2427
+
2428
+
2429
+
2430
+
2431
+
2432
+
2433
+
2434
+
2435
+
2436
+
2437
+
2438
+
2439
+
2440
+
2441
+
2442
+
2443
+
2444
+
2445
+
2446
+
2447
+
2448
+
2449
+
2450
+
2451
+
2452
+
2453
+
2454
+
2455
+
2456
+
2457
+
2458
+
2459
+
2460
+
2461
+
2462
+
2463
+
2464
+
2465
+
2466
+
2467
+
2468
+
2469
+
2470
+
2471
+
2472
+
2473
+
2474
+
2475
+
2476
+
2477
+
2478
+
2479
+
2480
+
2481
+
2482
+
2483
+
2484
+
2485
+
2486
+
2487
+
2488
+
2489
+
2490
+
2491
+
2492
+
2493
+
2494
+
2495
+
2496
+
2497
+
2498
+
2499
+
2500
+
2501
+
2502
+
2503
+
2504
+
2505
+
2506
+
2507
+
2508
+
2509
+
2510
+
2511
+
2512
+
2513
+
2514
+
2515
+
2516
+
2517
+
2518
+
2519
+
2520
+
2521
+
2522
+
2523
+
2524
+
2525
+
2526
+
2527
+
2528
+
2529
+
2530
+
2531
+
2532
+
2533
+
2534
+
2535
+
2536
+
2537
+
2538
+
2539
+
2540
+
2541
+
2542
+
2543
+
2544
+
2545
+ 𠮶
F5-TTS/src/f5_tts/infer/infer_cli.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import codecs
3
+ import os
4
+ import re
5
+ from datetime import datetime
6
+ from importlib.resources import files
7
+ from pathlib import Path
8
+
9
+ import numpy as np
10
+ import torch
11
+ import soundfile as sf
12
+ import tomli
13
+ from cached_path import cached_path
14
+ from omegaconf import OmegaConf
15
+
16
+ from f5_tts.infer.utils_infer import (
17
+ mel_spec_type,
18
+ target_rms,
19
+ cross_fade_duration,
20
+ nfe_step,
21
+ cfg_strength,
22
+ sway_sampling_coef,
23
+ speed,
24
+ fix_duration,
25
+ infer_process,
26
+ load_model,
27
+ load_vocoder,
28
+ preprocess_ref_audio_text,
29
+ remove_silence_for_generated_wav,
30
+ )
31
+ from f5_tts.model import DiT, UNetT
32
+
33
+
34
+ parser = argparse.ArgumentParser(
35
+ prog="python3 infer-cli.py",
36
+ description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.",
37
+ epilog="Specify options above to override one or more settings from config.",
38
+ )
39
+ parser.add_argument(
40
+ "-c",
41
+ "--config",
42
+ type=str,
43
+ default=os.path.join(files("f5_tts").joinpath("infer/examples/basic"), "basic.toml"),
44
+ help="The configuration file, default see infer/examples/basic/basic.toml",
45
+ )
46
+
47
+
48
+ # Note. Not to provide default value here in order to read default from config file
49
+
50
+ parser.add_argument(
51
+ "-m",
52
+ "--model",
53
+ type=str,
54
+ help="The model name: F5-TTS | E2-TTS",
55
+ )
56
+ parser.add_argument(
57
+ "-mc",
58
+ "--model_cfg",
59
+ type=str,
60
+ help="The path to F5-TTS model config file .yaml",
61
+ )
62
+ parser.add_argument(
63
+ "-p",
64
+ "--ckpt_file",
65
+ type=str,
66
+ help="The path to model checkpoint .pt, leave blank to use default",
67
+ default="/ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_vocos_l44k/pretrained_model_1200000.pt",
68
+ )
69
+ parser.add_argument(
70
+ "-v",
71
+ "--vocab_file",
72
+ type=str,
73
+ help="The path to vocab file .txt, leave blank to use default",
74
+ )
75
+ parser.add_argument(
76
+ "-r",
77
+ "--ref_audio",
78
+ type=str,
79
+ help="The reference audio file.",
80
+ )
81
+ parser.add_argument(
82
+ "-s",
83
+ "--ref_text",
84
+ type=str,
85
+ help="The transcript/subtitle for the reference audio",
86
+ )
87
+ parser.add_argument(
88
+ "-t",
89
+ "--gen_text",
90
+ type=str,
91
+ help="The text to make model synthesize a speech",
92
+ )
93
+ parser.add_argument(
94
+ "-f",
95
+ "--gen_file",
96
+ type=str,
97
+ help="The file with text to generate, will ignore --gen_text",
98
+ )
99
+ parser.add_argument(
100
+ "-o",
101
+ "--output_dir",
102
+ type=str,
103
+ help="The path to output folder",
104
+ )
105
+ parser.add_argument(
106
+ "-w",
107
+ "--output_file",
108
+ type=str,
109
+ help="The name of output file",
110
+ )
111
+ parser.add_argument(
112
+ "--save_chunk",
113
+ action="store_true",
114
+ help="To save each audio chunks during inference",
115
+ )
116
+ parser.add_argument(
117
+ "--remove_silence",
118
+ action="store_true",
119
+ help="To remove long silence found in ouput",
120
+ )
121
+ parser.add_argument(
122
+ "--load_vocoder_from_local",
123
+ action="store_true",
124
+ help="To load vocoder from local dir, default to ../checkpoints/vocos-mel-24khz",
125
+ )
126
+ parser.add_argument(
127
+ "--vocoder_name",
128
+ type=str,
129
+ choices=["vocos", "bigvgan"],
130
+ help=f"Used vocoder name: vocos | bigvgan, default {mel_spec_type}",
131
+ )
132
+ parser.add_argument(
133
+ "--target_rms",
134
+ type=float,
135
+ help=f"Target output speech loudness normalization value, default {target_rms}",
136
+ )
137
+ parser.add_argument(
138
+ "--cross_fade_duration",
139
+ type=float,
140
+ help=f"Duration of cross-fade between audio segments in seconds, default {cross_fade_duration}",
141
+ )
142
+ parser.add_argument(
143
+ "--nfe_step",
144
+ type=int,
145
+ help=f"The number of function evaluation (denoising steps), default {nfe_step}",
146
+ )
147
+ parser.add_argument(
148
+ "--cfg_strength",
149
+ type=float,
150
+ help=f"Classifier-free guidance strength, default {cfg_strength}",
151
+ )
152
+ parser.add_argument(
153
+ "--sway_sampling_coef",
154
+ type=float,
155
+ help=f"Sway Sampling coefficient, default {sway_sampling_coef}",
156
+ )
157
+ parser.add_argument(
158
+ "--speed",
159
+ type=float,
160
+ help=f"The speed of the generated audio, default {speed}",
161
+ )
162
+ parser.add_argument(
163
+ "--fix_duration",
164
+ type=float,
165
+ help=f"Fix the total duration (ref and gen audios) in seconds, default {fix_duration}",
166
+ )
167
+
168
+ parser.add_argument(
169
+ "--start",
170
+ type=int,
171
+ default=0,
172
+ )
173
+ parser.add_argument(
174
+ "--end",
175
+ type=int,
176
+ default=99999999,
177
+ )
178
+ parser.add_argument(
179
+ "--v2a_path",
180
+ type=str,
181
+ default="",
182
+ )
183
+ parser.add_argument(
184
+ "--infer_list",
185
+ type=str,
186
+ default="/ailab-train/speech/zhanghaomin/datas/v2cdata/test.scp",
187
+ )
188
+
189
+ args = parser.parse_args()
190
+
191
+
192
+ # config file
193
+
194
+ config = tomli.load(open(args.config, "rb"))
195
+
196
+
197
+ # command-line interface parameters
198
+
199
+ model = args.model or config.get("model", "F5-TTS")
200
+ model_cfg = args.model_cfg or config.get("model_cfg", str(files("f5_tts").joinpath("configs/F5TTS_Base_train.yaml")))
201
+ ckpt_file = args.ckpt_file or config.get("ckpt_file", "")
202
+ vocab_file = args.vocab_file or config.get("vocab_file", "")
203
+
204
+ ref_audio = args.ref_audio or config.get("ref_audio", "infer/examples/basic/basic_ref_en.wav")
205
+ ref_text = (
206
+ args.ref_text
207
+ if args.ref_text is not None
208
+ else config.get("ref_text", "Some call me nature, others call me mother nature.")
209
+ )
210
+ gen_text = args.gen_text or config.get("gen_text", "Here we generate something just for test.")
211
+ gen_file = args.gen_file or config.get("gen_file", "")
212
+
213
+ output_dir = args.output_dir or config.get("output_dir", "tests")
214
+ output_file = args.output_file or config.get(
215
+ "output_file", f"infer_cli_{datetime.now().strftime(r'%Y%m%d_%H%M%S')}.wav"
216
+ )
217
+
218
+ save_chunk = args.save_chunk or config.get("save_chunk", False)
219
+ remove_silence = args.remove_silence or config.get("remove_silence", False)
220
+ load_vocoder_from_local = args.load_vocoder_from_local or config.get("load_vocoder_from_local", False)
221
+
222
+ vocoder_name = args.vocoder_name or config.get("vocoder_name", mel_spec_type)
223
+ target_rms = args.target_rms or config.get("target_rms", target_rms)
224
+ cross_fade_duration = args.cross_fade_duration or config.get("cross_fade_duration", cross_fade_duration)
225
+ nfe_step = args.nfe_step or config.get("nfe_step", nfe_step)
226
+ cfg_strength = args.cfg_strength or config.get("cfg_strength", cfg_strength)
227
+ sway_sampling_coef = args.sway_sampling_coef or config.get("sway_sampling_coef", sway_sampling_coef)
228
+ speed = args.speed or config.get("speed", speed)
229
+ fix_duration = args.fix_duration or config.get("fix_duration", fix_duration)
230
+
231
+
232
+ # patches for pip pkg user
233
+ if "infer/examples/" in ref_audio:
234
+ ref_audio = str(files("f5_tts").joinpath(f"{ref_audio}"))
235
+ if "infer/examples/" in gen_file:
236
+ gen_file = str(files("f5_tts").joinpath(f"{gen_file}"))
237
+ if "voices" in config:
238
+ for voice in config["voices"]:
239
+ voice_ref_audio = config["voices"][voice]["ref_audio"]
240
+ if "infer/examples/" in voice_ref_audio:
241
+ config["voices"][voice]["ref_audio"] = str(files("f5_tts").joinpath(f"{voice_ref_audio}"))
242
+
243
+
244
+ # ignore gen_text if gen_file provided
245
+
246
+ if gen_file:
247
+ gen_text = codecs.open(gen_file, "r", "utf-8").read()
248
+
249
+
250
+ # output path
251
+
252
+ wave_path = Path(output_dir) / output_file
253
+ # spectrogram_path = Path(output_dir) / "infer_cli_out.png"
254
+ if save_chunk:
255
+ output_chunk_dir = os.path.join(output_dir, f"{Path(output_file).stem}_chunks")
256
+ if not os.path.exists(output_chunk_dir):
257
+ os.makedirs(output_chunk_dir)
258
+
259
+
260
+ # load vocoder
261
+
262
+ if vocoder_name == "vocos":
263
+ vocoder_local_path = "../checkpoints/vocos-mel-24khz"
264
+ elif vocoder_name == "bigvgan":
265
+ vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
266
+
267
+ vocoder = load_vocoder(vocoder_name=vocoder_name, is_local=load_vocoder_from_local, local_path=vocoder_local_path)
268
+
269
+
270
+ # load TTS model
271
+
272
+ if model == "F5-TTS":
273
+ model_cls = DiT
274
+ model_cfg = OmegaConf.load(model_cfg).model.arch
275
+ if not ckpt_file: # path not specified, download from repo
276
+ if vocoder_name == "vocos":
277
+ repo_name = "F5-TTS"
278
+ exp_name = "F5TTS_Base"
279
+ ckpt_step = 1200000
280
+ ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
281
+ # ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
282
+ elif vocoder_name == "bigvgan":
283
+ repo_name = "F5-TTS"
284
+ exp_name = "F5TTS_Base_bigvgan"
285
+ ckpt_step = 1250000
286
+ ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.pt"))
287
+
288
+ elif model == "E2-TTS":
289
+ assert args.model_cfg is None, "E2-TTS does not support custom model_cfg yet"
290
+ assert vocoder_name == "vocos", "E2-TTS only supports vocoder vocos yet"
291
+ model_cls = UNetT
292
+ model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
293
+ if not ckpt_file: # path not specified, download from repo
294
+ repo_name = "E2-TTS"
295
+ exp_name = "E2TTS_Base"
296
+ ckpt_step = 1200000
297
+ ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
298
+ # ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
299
+
300
+ print(f"Using {model}...")
301
+ ema_model = load_model(model_cls, model_cfg, ckpt_file, mel_spec_type=vocoder_name, vocab_file=vocab_file)
302
+
303
+
304
+ # inference process
305
+
306
+
307
+ def main(ref_audio, ref_text, gen_text, energy):
308
+ main_voice = {"ref_audio": ref_audio, "ref_text": ref_text}
309
+ if "voices" not in config:
310
+ voices = {"main": main_voice}
311
+ else:
312
+ voices = config["voices"]
313
+ voices["main"] = main_voice
314
+ for voice in voices:
315
+ print("Voice:", voice)
316
+ print("ref_audio ", voices[voice]["ref_audio"])
317
+ voices[voice]["ref_audio"], voices[voice]["ref_text"] = preprocess_ref_audio_text(
318
+ voices[voice]["ref_audio"], voices[voice]["ref_text"]
319
+ )
320
+ print("ref_audio_", voices[voice]["ref_audio"], "\n\n")
321
+
322
+ generated_audio_segments = []
323
+ reg1 = r"(?=\[\w+\])"
324
+ chunks = re.split(reg1, gen_text)
325
+ reg2 = r"\[(\w+)\]"
326
+ for text in chunks:
327
+ if not text.strip():
328
+ continue
329
+ match = re.match(reg2, text)
330
+ if match:
331
+ voice = match[1]
332
+ else:
333
+ print("No voice tag found, using main.")
334
+ voice = "main"
335
+ if voice not in voices:
336
+ print(f"Voice {voice} not found, using main.")
337
+ voice = "main"
338
+ text = re.sub(reg2, "", text)
339
+ ref_audio_ = voices[voice]["ref_audio"]
340
+ ref_text_ = voices[voice]["ref_text"]
341
+ gen_text_ = text.strip()
342
+ print(f"Voice: {voice}")
343
+ audio_segment, final_sample_rate, spectragram = infer_process(
344
+ ref_audio_,
345
+ ref_text_,
346
+ gen_text_,
347
+ ema_model,
348
+ vocoder,
349
+ mel_spec_type=vocoder_name,
350
+ target_rms=target_rms,
351
+ cross_fade_duration=cross_fade_duration,
352
+ nfe_step=nfe_step,
353
+ cfg_strength=cfg_strength,
354
+ sway_sampling_coef=sway_sampling_coef,
355
+ speed=speed,
356
+ fix_duration=fix_duration,
357
+ energy=energy,
358
+ )
359
+ generated_audio_segments.append(audio_segment)
360
+
361
+ if save_chunk:
362
+ if len(gen_text_) > 200:
363
+ gen_text_ = gen_text_[:200] + " ... "
364
+ sf.write(
365
+ os.path.join(output_chunk_dir, f"{len(generated_audio_segments)-1}_{gen_text_}.wav"),
366
+ audio_segment,
367
+ final_sample_rate,
368
+ )
369
+
370
+ if generated_audio_segments:
371
+ final_wave = np.concatenate(generated_audio_segments)
372
+ return final_wave, final_sample_rate
373
+
374
+ #if not os.path.exists(output_dir):
375
+ # os.makedirs(output_dir)
376
+
377
+ #with open(wave_path, "wb") as f:
378
+ # sf.write(f.name, final_wave, final_sample_rate)
379
+ # # Remove silence
380
+ # if remove_silence:
381
+ # remove_silence_for_generated_wav(f.name)
382
+ # print(f.name)
383
+
384
+
385
+ import json
386
+ import torchaudio
387
+ from torchmetrics.audio import ScaleInvariantSignalDistortionRatio
388
+
389
+
390
+ si_sdr = ScaleInvariantSignalDistortionRatio()
391
+
392
+
393
+ #def normalize_wav(waveform):
394
+ # waveform = waveform - torch.mean(waveform)
395
+ # waveform = waveform / (torch.max(torch.abs(waveform[0, :])) + 1e-8)
396
+ # return waveform * 0.5
397
+
398
+ def normalize_wav(waveform, waveform_ref):
399
+ waveform = waveform / (torch.max(torch.abs(waveform))) * (torch.max(torch.abs(waveform_ref)))
400
+ return waveform
401
+
402
+
403
+ if __name__ == "__main__":
404
+ #scp1 = "/ailab-train/speech/zhanghaomin/datas/v2cdata/train.scp"
405
+ #scp2 = "/ailab-train/speech/zhanghaomin/datas/v2cdata/test.scp"
406
+ scp2 = args.infer_list
407
+
408
+ #v2a_path = "/ailab-train/speech/zhanghaomin/codes3/MMAudio-main/output_v2c_neg/"
409
+ v2a_path = args.v2a_path
410
+
411
+ #with open(scp1, "r") as fr:
412
+ # lines1 = fr.readlines()
413
+ with open(scp2, "r") as fr:
414
+ lines2 = fr.readlines()
415
+ #lines = lines1 + lines2
416
+ lines = lines2
417
+
418
+ datas = {}
419
+ for line in lines:
420
+ video, txt, wav = line.strip().split("\t")
421
+ v2a_audio = v2a_path + video.replace("/", "__") + ".flac"
422
+ if not os.path.exists(video) or not os.path.exists(wav) or not os.path.exists(v2a_audio):
423
+ continue
424
+ spk = wav.rsplit("/", 1)[0]
425
+ if spk not in datas:
426
+ datas[spk] = []
427
+ datas[spk].append([video, txt, wav])
428
+
429
+ datas2 = []
430
+ for spk in datas:
431
+ for i in range(len(datas[spk])):
432
+ p = -1
433
+ for j in range(len(datas[spk])):
434
+ if j == i:
435
+ continue
436
+ if p == -1 or len(datas[spk][j][1]) > len(datas[spk][p][1]):
437
+ p = j
438
+ datas2.append([datas[spk][i], datas[spk][p]])
439
+
440
+ texts = []
441
+ cond_lens = []
442
+ prompts = []
443
+ waveforms = []
444
+ infos = []
445
+
446
+ print("datas2", len(datas2))
447
+ if False:
448
+ with open("/ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/data/v2c_test.lst", "w") as fw:
449
+ for i, (data, data_p) in enumerate(datas2):
450
+ video, txt, wav = data
451
+ video_p, txt_p, wav_p = data_p
452
+
453
+ v2a_audio = v2a_path + video.replace("/", "__") + ".flac"
454
+ v2a_audio_p = v2a_path + video_p.replace("/", "__") + ".flac"
455
+
456
+ if not os.path.exists(video) or not os.path.exists(wav) or not os.path.exists(v2a_audio):
457
+ continue
458
+ if not os.path.exists(video_p) or not os.path.exists(wav_p) or not os.path.exists(v2a_audio_p):
459
+ continue
460
+
461
+ fw.write(wav_p+"\t"+video_p+"\t"+txt_p+"\t"+wav+"\t"+video+"\t"+txt+"\n")
462
+
463
+
464
+ if False:
465
+ sisdr_res = 0
466
+ N = 0
467
+ for i, (data, data_p) in enumerate(datas2):
468
+ video, txt, wav = data
469
+ video_p, txt_p, wav_p = data_p
470
+
471
+ v2a_audio = v2a_path + video.replace("/", "__") + ".flac"
472
+ v2a_audio_p = v2a_path + video_p.replace("/", "__") + ".flac"
473
+
474
+ if not os.path.exists(video) or not os.path.exists(wav) or not os.path.exists(v2a_audio):
475
+ continue
476
+ if not os.path.exists(video_p) or not os.path.exists(wav_p) or not os.path.exists(v2a_audio_p):
477
+ continue
478
+
479
+ wav_gen = "/ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/outputs/gen/" + str(i).zfill(8) + ".wav"
480
+ waveform_gen, sr_gen = torchaudio.load(wav_gen)
481
+ duration_gen = waveform_gen.shape[-1] / sr_gen
482
+ energy_gen = []
483
+ for i in range(int(duration_gen/(256/24000))):
484
+ energy_gen.append(waveform_gen[0,int(i*sr_gen*(256/24000)):int((i+1)*sr_gen*(256/24000))].abs().mean())
485
+ energy_gen = np.array(energy_gen)
486
+ energy_gen = energy_gen / max(energy_gen)
487
+
488
+ energy = torch.from_numpy(np.load(wav+".npz")["arr_0"])
489
+ #energy_pred = torch.from_numpy(np.load(v2a_audio+".npz")["arr_0"])
490
+ energy_pred = torch.from_numpy(energy_gen)
491
+
492
+ if energy_pred.shape[-1] < energy.shape[0]:
493
+ energy_pred = torch.cat([energy_pred, torch.zeros(energy.shape[0]-energy_pred.shape[0])], dim=0)
494
+ else:
495
+ energy_pred = energy_pred[:energy.shape[0]]
496
+ sisdr = si_sdr(energy_pred, energy)
497
+ #print("sisdr", sisdr)
498
+ sisdr_res += sisdr
499
+ N += 1
500
+ print("sisdr_res", N, sisdr_res/N)
501
+
502
+ if True:
503
+ for i, (data, data_p) in enumerate(datas2[args.start:args.end]):
504
+ video, txt, wav = data
505
+ video_p, txt_p, wav_p = data_p
506
+
507
+ v2a_audio = v2a_path + video.replace("/", "__") + ".flac"
508
+ v2a_audio_p = v2a_path + video_p.replace("/", "__") + ".flac"
509
+
510
+ if not os.path.exists(video) or not os.path.exists(wav) or not os.path.exists(v2a_audio):
511
+ continue
512
+ if not os.path.exists(video_p) or not os.path.exists(wav_p) or not os.path.exists(v2a_audio_p):
513
+ continue
514
+
515
+ energy = torch.from_numpy(np.load(v2a_audio+".npz")["arr_0"]).unsqueeze(0).unsqueeze(2)
516
+ energy_p = torch.from_numpy(np.load(v2a_audio_p+".npz")["arr_0"]).unsqueeze(0).unsqueeze(2)
517
+ #print("energy shape", energy_p.shape, energy.shape)
518
+ #energy = torch.cat([energy_p, energy], dim=1)
519
+
520
+ try:
521
+ ####wav_gen, sr_gen = main(wav_p, txt_p, txt, [torch.zeros_like(energy_p), torch.zeros_like(energy)])
522
+ ####wav_gen, sr_gen = main(wav_p, txt_p, txt, None)
523
+ ####wav_gen, sr_gen = main(wav, txt, txt, None)
524
+ wav_gen, sr_gen = main(wav_p, txt_p, txt, [energy_p, energy])
525
+ ####wav_gen, sr_gen = main(wav, txt, txt, [energy.clone(), energy])
526
+ wav_gen = torch.from_numpy(wav_gen).unsqueeze(0)
527
+ assert(sr_gen == 24000)
528
+ except:
529
+ print("error generation", i+args.start, txt_p, txt)
530
+ wav_gen = torch.zeros(1, 24000)
531
+ sr_gen = 24000
532
+
533
+ waveform, sr = torchaudio.load(wav)
534
+ if sr != 24000:
535
+ waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=24000)
536
+ waveform_p, sr = torchaudio.load(wav_p)
537
+ if sr != 24000:
538
+ waveform_p = torchaudio.functional.resample(waveform_p, orig_freq=sr, new_freq=24000)
539
+ #print(wav_gen.shape, wav_gen.max(), waveform.max(), waveform_p.max())
540
+
541
+ if not os.path.exists(output_dir):
542
+ os.makedirs(output_dir)
543
+ if not os.path.exists(output_dir+"/ref/"):
544
+ os.makedirs(output_dir+"/ref/")
545
+ if not os.path.exists(output_dir+"/gen/"):
546
+ os.makedirs(output_dir+"/gen/")
547
+ if not os.path.exists(output_dir+"/tgt/"):
548
+ os.makedirs(output_dir+"/tgt/")
549
+
550
+ torchaudio.save(output_dir+"/ref/"+str(i+args.start).zfill(8)+".wav", waveform_p[0:1,:], 24000)
551
+ torchaudio.save(output_dir+"/gen/"+str(i+args.start).zfill(8)+".wav", normalize_wav(wav_gen[0:1,:], waveform_p[0:1,:]), 24000)
552
+ torchaudio.save(output_dir+"/tgt/"+str(i+args.start).zfill(8)+".wav", waveform[0:1,:], 24000)
553
+
554
+ if not os.path.exists(output_dir+"/ref_nonorm/"):
555
+ os.makedirs(output_dir+"/ref_nonorm/")
556
+ if not os.path.exists(output_dir+"/gen_nonorm/"):
557
+ os.makedirs(output_dir+"/gen_nonorm/")
558
+ if not os.path.exists(output_dir+"/tgt_nonorm/"):
559
+ os.makedirs(output_dir+"/tgt_nonorm/")
560
+ torchaudio.save(output_dir+"/ref_nonorm/"+str(i+args.start).zfill(8)+".wav", waveform_p[0:1,:], 24000)
561
+ torchaudio.save(output_dir+"/gen_nonorm/"+str(i+args.start).zfill(8)+".wav", wav_gen[0:1,:], 24000)
562
+ torchaudio.save(output_dir+"/tgt_nonorm/"+str(i+args.start).zfill(8)+".wav", waveform[0:1,:], 24000)
563
+
564
+
565
+ """
566
+ --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt
567
+ --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/model_14272.pt
568
+
569
+ CUDA_VISIBLE_DEVICES=0 nohup python src/f5_tts/infer/infer_cli.py --output_dir outputs_s1/ --start 0 --end 338 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
570
+ CUDA_VISIBLE_DEVICES=1 nohup python src/f5_tts/infer/infer_cli.py --output_dir outputs_s1/ --start 338 --end 676 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
571
+ CUDA_VISIBLE_DEVICES=2 nohup python src/f5_tts/infer/infer_cli.py --output_dir outputs_s1/ --start 676 --end 1014 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
572
+ CUDA_VISIBLE_DEVICES=3 nohup python src/f5_tts/infer/infer_cli.py --output_dir outputs_s1/ --start 1014 --end 1352 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
573
+ CUDA_VISIBLE_DEVICES=4 nohup python src/f5_tts/infer/infer_cli.py --output_dir outputs_s1/ --start 1352 --end 1690 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
574
+ CUDA_VISIBLE_DEVICES=5 nohup python src/f5_tts/infer/infer_cli.py --output_dir outputs_s1/ --start 1690 --end 2028 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
575
+ CUDA_VISIBLE_DEVICES=6 nohup python src/f5_tts/infer/infer_cli.py --output_dir outputs_s1/ --start 2028 --end 2366 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
576
+ CUDA_VISIBLE_DEVICES=7 nohup python src/f5_tts/infer/infer_cli.py --output_dir outputs_s1/ --start 2366 --end 2704 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
577
+
578
+ CUDA_VISIBLE_DEVICES=0 nohup python src/f5_tts/infer/infer_cli.py --output_dir outputs_v2c_s44/ --start 0 --end 338 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_s44/model_14272.pt --v2a_path /ailab-train/speech/zhanghaomin/codes3/MMAudio-main/output_v2c_s44/ &
579
+ CUDA_VISIBLE_DEVICES=1 nohup python src/f5_tts/infer/infer_cli.py --output_dir outputs_v2c_s44/ --start 338 --end 676 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_s44/model_14272.pt --v2a_path /ailab-train/speech/zhanghaomin/codes3/MMAudio-main/output_v2c_s44/ &
580
+ CUDA_VISIBLE_DEVICES=2 nohup python src/f5_tts/infer/infer_cli.py --output_dir outputs_v2c_s44/ --start 676 --end 1014 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_s44/model_14272.pt --v2a_path /ailab-train/speech/zhanghaomin/codes3/MMAudio-main/output_v2c_s44/ &
581
+ CUDA_VISIBLE_DEVICES=3 nohup python src/f5_tts/infer/infer_cli.py --output_dir outputs_v2c_s44/ --start 1014 --end 1352 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_s44/model_14272.pt --v2a_path /ailab-train/speech/zhanghaomin/codes3/MMAudio-main/output_v2c_s44/ &
582
+ CUDA_VISIBLE_DEVICES=4 nohup python src/f5_tts/infer/infer_cli.py --output_dir outputs_v2c_s44/ --start 1352 --end 1690 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_s44/model_14272.pt --v2a_path /ailab-train/speech/zhanghaomin/codes3/MMAudio-main/output_v2c_s44/ &
583
+ CUDA_VISIBLE_DEVICES=5 nohup python src/f5_tts/infer/infer_cli.py --output_dir outputs_v2c_s44/ --start 1690 --end 2028 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_s44/model_14272.pt --v2a_path /ailab-train/speech/zhanghaomin/codes3/MMAudio-main/output_v2c_s44/ &
584
+ CUDA_VISIBLE_DEVICES=6 nohup python src/f5_tts/infer/infer_cli.py --output_dir outputs_v2c_s44/ --start 2028 --end 2366 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_s44/model_14272.pt --v2a_path /ailab-train/speech/zhanghaomin/codes3/MMAudio-main/output_v2c_s44/ &
585
+ CUDA_VISIBLE_DEVICES=7 nohup python src/f5_tts/infer/infer_cli.py --output_dir outputs_v2c_s44/ --start 2366 --end 2704 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_s44/model_14272.pt --v2a_path /ailab-train/speech/zhanghaomin/codes3/MMAudio-main/output_v2c_s44/ &
586
+ """
587
+
F5-TTS/src/f5_tts/infer/infer_cli_libritts.py ADDED
@@ -0,0 +1,478 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import codecs
3
+ import os
4
+ import re
5
+ from datetime import datetime
6
+ from importlib.resources import files
7
+ from pathlib import Path
8
+
9
+ import numpy as np
10
+ import torch
11
+ import soundfile as sf
12
+ import tomli
13
+ from cached_path import cached_path
14
+ from omegaconf import OmegaConf
15
+
16
+ from f5_tts.infer.utils_infer import (
17
+ mel_spec_type,
18
+ target_rms,
19
+ cross_fade_duration,
20
+ nfe_step,
21
+ cfg_strength,
22
+ sway_sampling_coef,
23
+ speed,
24
+ fix_duration,
25
+ infer_process,
26
+ load_model,
27
+ load_vocoder,
28
+ preprocess_ref_audio_text,
29
+ remove_silence_for_generated_wav,
30
+ )
31
+ from f5_tts.model import DiT, UNetT
32
+
33
+
34
+ parser = argparse.ArgumentParser(
35
+ prog="python3 infer-cli.py",
36
+ description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.",
37
+ epilog="Specify options above to override one or more settings from config.",
38
+ )
39
+ parser.add_argument(
40
+ "-c",
41
+ "--config",
42
+ type=str,
43
+ default=os.path.join(files("f5_tts").joinpath("infer/examples/basic"), "basic.toml"),
44
+ help="The configuration file, default see infer/examples/basic/basic.toml",
45
+ )
46
+
47
+
48
+ # Note. Not to provide default value here in order to read default from config file
49
+
50
+ parser.add_argument(
51
+ "-m",
52
+ "--model",
53
+ type=str,
54
+ help="The model name: F5-TTS | E2-TTS",
55
+ )
56
+ parser.add_argument(
57
+ "-mc",
58
+ "--model_cfg",
59
+ type=str,
60
+ help="The path to F5-TTS model config file .yaml",
61
+ )
62
+ parser.add_argument(
63
+ "-p",
64
+ "--ckpt_file",
65
+ type=str,
66
+ help="The path to model checkpoint .pt, leave blank to use default",
67
+ default="/ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt",
68
+ #default="/ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/model_4906.pt",
69
+ )
70
+ parser.add_argument(
71
+ "-v",
72
+ "--vocab_file",
73
+ type=str,
74
+ help="The path to vocab file .txt, leave blank to use default",
75
+ )
76
+ parser.add_argument(
77
+ "-r",
78
+ "--ref_audio",
79
+ type=str,
80
+ help="The reference audio file.",
81
+ )
82
+ parser.add_argument(
83
+ "-s",
84
+ "--ref_text",
85
+ type=str,
86
+ help="The transcript/subtitle for the reference audio",
87
+ )
88
+ parser.add_argument(
89
+ "-t",
90
+ "--gen_text",
91
+ type=str,
92
+ help="The text to make model synthesize a speech",
93
+ )
94
+ parser.add_argument(
95
+ "-f",
96
+ "--gen_file",
97
+ type=str,
98
+ help="The file with text to generate, will ignore --gen_text",
99
+ )
100
+ parser.add_argument(
101
+ "-o",
102
+ "--output_dir",
103
+ type=str,
104
+ help="The path to output folder",
105
+ )
106
+ parser.add_argument(
107
+ "-w",
108
+ "--output_file",
109
+ type=str,
110
+ help="The name of output file",
111
+ )
112
+ parser.add_argument(
113
+ "--save_chunk",
114
+ action="store_true",
115
+ help="To save each audio chunks during inference",
116
+ )
117
+ parser.add_argument(
118
+ "--remove_silence",
119
+ action="store_true",
120
+ help="To remove long silence found in ouput",
121
+ )
122
+ parser.add_argument(
123
+ "--load_vocoder_from_local",
124
+ action="store_true",
125
+ help="To load vocoder from local dir, default to ../checkpoints/vocos-mel-24khz",
126
+ )
127
+ parser.add_argument(
128
+ "--vocoder_name",
129
+ type=str,
130
+ choices=["vocos", "bigvgan"],
131
+ help=f"Used vocoder name: vocos | bigvgan, default {mel_spec_type}",
132
+ )
133
+ parser.add_argument(
134
+ "--target_rms",
135
+ type=float,
136
+ help=f"Target output speech loudness normalization value, default {target_rms}",
137
+ )
138
+ parser.add_argument(
139
+ "--cross_fade_duration",
140
+ type=float,
141
+ help=f"Duration of cross-fade between audio segments in seconds, default {cross_fade_duration}",
142
+ )
143
+ parser.add_argument(
144
+ "--nfe_step",
145
+ type=int,
146
+ help=f"The number of function evaluation (denoising steps), default {nfe_step}",
147
+ )
148
+ parser.add_argument(
149
+ "--cfg_strength",
150
+ type=float,
151
+ help=f"Classifier-free guidance strength, default {cfg_strength}",
152
+ )
153
+ parser.add_argument(
154
+ "--sway_sampling_coef",
155
+ type=float,
156
+ help=f"Sway Sampling coefficient, default {sway_sampling_coef}",
157
+ )
158
+ parser.add_argument(
159
+ "--speed",
160
+ type=float,
161
+ help=f"The speed of the generated audio, default {speed}",
162
+ )
163
+ parser.add_argument(
164
+ "--fix_duration",
165
+ type=float,
166
+ help=f"Fix the total duration (ref and gen audios) in seconds, default {fix_duration}",
167
+ )
168
+
169
+ parser.add_argument(
170
+ "--start",
171
+ type=int,
172
+ default=0,
173
+ )
174
+ parser.add_argument(
175
+ "--end",
176
+ type=int,
177
+ default=99999999,
178
+ )
179
+
180
+ args = parser.parse_args()
181
+
182
+
183
+ # config file
184
+
185
+ config = tomli.load(open(args.config, "rb"))
186
+
187
+
188
+ # command-line interface parameters
189
+
190
+ model = args.model or config.get("model", "F5-TTS")
191
+ model_cfg = args.model_cfg or config.get("model_cfg", str(files("f5_tts").joinpath("configs/F5TTS_Base_train.yaml")))
192
+ ckpt_file = args.ckpt_file or config.get("ckpt_file", "")
193
+ vocab_file = args.vocab_file or config.get("vocab_file", "")
194
+
195
+ ref_audio = args.ref_audio or config.get("ref_audio", "infer/examples/basic/basic_ref_en.wav")
196
+ ref_text = (
197
+ args.ref_text
198
+ if args.ref_text is not None
199
+ else config.get("ref_text", "Some call me nature, others call me mother nature.")
200
+ )
201
+ gen_text = args.gen_text or config.get("gen_text", "Here we generate something just for test.")
202
+ gen_file = args.gen_file or config.get("gen_file", "")
203
+
204
+ output_dir = args.output_dir or config.get("output_dir", "tests")
205
+ output_file = args.output_file or config.get(
206
+ "output_file", f"infer_cli_{datetime.now().strftime(r'%Y%m%d_%H%M%S')}.wav"
207
+ )
208
+
209
+ save_chunk = args.save_chunk or config.get("save_chunk", False)
210
+ remove_silence = args.remove_silence or config.get("remove_silence", False)
211
+ load_vocoder_from_local = args.load_vocoder_from_local or config.get("load_vocoder_from_local", False)
212
+
213
+ vocoder_name = args.vocoder_name or config.get("vocoder_name", mel_spec_type)
214
+ target_rms = args.target_rms or config.get("target_rms", target_rms)
215
+ cross_fade_duration = args.cross_fade_duration or config.get("cross_fade_duration", cross_fade_duration)
216
+ nfe_step = args.nfe_step or config.get("nfe_step", nfe_step)
217
+ cfg_strength = args.cfg_strength or config.get("cfg_strength", cfg_strength)
218
+ sway_sampling_coef = args.sway_sampling_coef or config.get("sway_sampling_coef", sway_sampling_coef)
219
+ speed = args.speed or config.get("speed", speed)
220
+ fix_duration = args.fix_duration or config.get("fix_duration", fix_duration)
221
+
222
+
223
+ # patches for pip pkg user
224
+ if "infer/examples/" in ref_audio:
225
+ ref_audio = str(files("f5_tts").joinpath(f"{ref_audio}"))
226
+ if "infer/examples/" in gen_file:
227
+ gen_file = str(files("f5_tts").joinpath(f"{gen_file}"))
228
+ if "voices" in config:
229
+ for voice in config["voices"]:
230
+ voice_ref_audio = config["voices"][voice]["ref_audio"]
231
+ if "infer/examples/" in voice_ref_audio:
232
+ config["voices"][voice]["ref_audio"] = str(files("f5_tts").joinpath(f"{voice_ref_audio}"))
233
+
234
+
235
+ # ignore gen_text if gen_file provided
236
+
237
+ if gen_file:
238
+ gen_text = codecs.open(gen_file, "r", "utf-8").read()
239
+
240
+
241
+ # output path
242
+
243
+ wave_path = Path(output_dir) / output_file
244
+ # spectrogram_path = Path(output_dir) / "infer_cli_out.png"
245
+ if save_chunk:
246
+ output_chunk_dir = os.path.join(output_dir, f"{Path(output_file).stem}_chunks")
247
+ if not os.path.exists(output_chunk_dir):
248
+ os.makedirs(output_chunk_dir)
249
+
250
+
251
+ # load vocoder
252
+
253
+ if vocoder_name == "vocos":
254
+ vocoder_local_path = "../checkpoints/vocos-mel-24khz"
255
+ elif vocoder_name == "bigvgan":
256
+ vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
257
+
258
+ vocoder = load_vocoder(vocoder_name=vocoder_name, is_local=load_vocoder_from_local, local_path=vocoder_local_path)
259
+
260
+
261
+ # load TTS model
262
+
263
+ if model == "F5-TTS":
264
+ model_cls = DiT
265
+ model_cfg = OmegaConf.load(model_cfg).model.arch
266
+ if not ckpt_file: # path not specified, download from repo
267
+ if vocoder_name == "vocos":
268
+ repo_name = "F5-TTS"
269
+ exp_name = "F5TTS_Base"
270
+ ckpt_step = 1200000
271
+ ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
272
+ # ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
273
+ elif vocoder_name == "bigvgan":
274
+ repo_name = "F5-TTS"
275
+ exp_name = "F5TTS_Base_bigvgan"
276
+ ckpt_step = 1250000
277
+ ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.pt"))
278
+
279
+ elif model == "E2-TTS":
280
+ assert args.model_cfg is None, "E2-TTS does not support custom model_cfg yet"
281
+ assert vocoder_name == "vocos", "E2-TTS only supports vocoder vocos yet"
282
+ model_cls = UNetT
283
+ model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
284
+ if not ckpt_file: # path not specified, download from repo
285
+ repo_name = "E2-TTS"
286
+ exp_name = "E2TTS_Base"
287
+ ckpt_step = 1200000
288
+ ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
289
+ # ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
290
+
291
+ print(f"Using {model}...")
292
+ ema_model = load_model(model_cls, model_cfg, ckpt_file, mel_spec_type=vocoder_name, vocab_file=vocab_file)
293
+
294
+
295
+ # inference process
296
+
297
+
298
+ def main(ref_audio, ref_text, gen_text, energy):
299
+ main_voice = {"ref_audio": ref_audio, "ref_text": ref_text}
300
+ if "voices" not in config:
301
+ voices = {"main": main_voice}
302
+ else:
303
+ voices = config["voices"]
304
+ voices["main"] = main_voice
305
+ for voice in voices:
306
+ print("Voice:", voice)
307
+ print("ref_audio ", voices[voice]["ref_audio"])
308
+ voices[voice]["ref_audio"], voices[voice]["ref_text"] = preprocess_ref_audio_text(
309
+ voices[voice]["ref_audio"], voices[voice]["ref_text"]
310
+ )
311
+ print("ref_audio_", voices[voice]["ref_audio"], "\n\n")
312
+
313
+ generated_audio_segments = []
314
+ reg1 = r"(?=\[\w+\])"
315
+ chunks = re.split(reg1, gen_text)
316
+ reg2 = r"\[(\w+)\]"
317
+ for text in chunks:
318
+ if not text.strip():
319
+ continue
320
+ match = re.match(reg2, text)
321
+ if match:
322
+ voice = match[1]
323
+ else:
324
+ print("No voice tag found, using main.")
325
+ voice = "main"
326
+ if voice not in voices:
327
+ print(f"Voice {voice} not found, using main.")
328
+ voice = "main"
329
+ text = re.sub(reg2, "", text)
330
+ ref_audio_ = voices[voice]["ref_audio"]
331
+ ref_text_ = voices[voice]["ref_text"]
332
+ gen_text_ = text.strip()
333
+ print(f"Voice: {voice}")
334
+ audio_segment, final_sample_rate, spectragram = infer_process(
335
+ ref_audio_,
336
+ ref_text_,
337
+ gen_text_,
338
+ ema_model,
339
+ vocoder,
340
+ mel_spec_type=vocoder_name,
341
+ target_rms=target_rms,
342
+ cross_fade_duration=cross_fade_duration,
343
+ nfe_step=nfe_step,
344
+ cfg_strength=cfg_strength,
345
+ sway_sampling_coef=sway_sampling_coef,
346
+ speed=speed,
347
+ fix_duration=fix_duration,
348
+ energy=energy,
349
+ )
350
+ generated_audio_segments.append(audio_segment)
351
+
352
+ if save_chunk:
353
+ if len(gen_text_) > 200:
354
+ gen_text_ = gen_text_[:200] + " ... "
355
+ sf.write(
356
+ os.path.join(output_chunk_dir, f"{len(generated_audio_segments)-1}_{gen_text_}.wav"),
357
+ audio_segment,
358
+ final_sample_rate,
359
+ )
360
+
361
+ if generated_audio_segments:
362
+ final_wave = np.concatenate(generated_audio_segments)
363
+ return final_wave, final_sample_rate
364
+
365
+ #if not os.path.exists(output_dir):
366
+ # os.makedirs(output_dir)
367
+
368
+ #with open(wave_path, "wb") as f:
369
+ # sf.write(f.name, final_wave, final_sample_rate)
370
+ # # Remove silence
371
+ # if remove_silence:
372
+ # remove_silence_for_generated_wav(f.name)
373
+ # print(f.name)
374
+
375
+
376
+ import json
377
+ import torchaudio
378
+ from torchmetrics.audio import ScaleInvariantSignalDistortionRatio
379
+
380
+
381
+ si_sdr = ScaleInvariantSignalDistortionRatio()
382
+
383
+
384
+ #def normalize_wav(waveform):
385
+ # waveform = waveform - torch.mean(waveform)
386
+ # waveform = waveform / (torch.max(torch.abs(waveform[0, :])) + 1e-8)
387
+ # return waveform * 0.5
388
+
389
+ def normalize_wav(waveform, waveform_ref):
390
+ waveform = waveform / (torch.max(torch.abs(waveform))) * (torch.max(torch.abs(waveform_ref)))
391
+ return waveform
392
+
393
+
394
+ if __name__ == "__main__":
395
+
396
+ scp1 = "/ailab-train/speech/zhanghaomin/codes3/e2-tv2as/datas/librispeech_pc_test_clean.json"
397
+ scp2 = "/ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/data/librispeech_pc_test_clean_cross_sentence.lst"
398
+ path = "/ailab-train/speech/zhanghaomin/codes3/tvt2as_mask_full_60000_8000_14000_94000_118000_tts/"
399
+
400
+ with open(scp1, "r") as fr:
401
+ lines1 = fr.readlines()
402
+ with open(scp2, "r") as fr:
403
+ lines2 = fr.readlines()
404
+
405
+ datas2 = []
406
+ for idx, (line1, line2) in enumerate(zip(lines1, lines2)):
407
+
408
+ utt_p, dur_p, text_p, utt, dur, text = line2.strip().split("\t")
409
+ wav_p = path + "ref/" + str(idx).zfill(8) + ".wav"
410
+ wav = path + "tgt/" + str(idx).zfill(8) + ".wav"
411
+
412
+ datas2.append(((text, wav), (text_p, wav_p)))
413
+
414
+
415
+ if True:
416
+ for i, (data, data_p) in enumerate(datas2[args.start:args.end]):
417
+ txt, wav = data
418
+ txt_p, wav_p = data_p
419
+
420
+ wav_gen, sr_gen = main(wav_p, txt_p, txt, None)
421
+ wav_gen = torch.from_numpy(wav_gen).unsqueeze(0)
422
+ assert(sr_gen == 24000)
423
+
424
+ waveform, sr = torchaudio.load(wav)
425
+ if sr != 24000:
426
+ waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=24000)
427
+ waveform_p, sr = torchaudio.load(wav_p)
428
+ if sr != 24000:
429
+ waveform_p = torchaudio.functional.resample(waveform_p, orig_freq=sr, new_freq=24000)
430
+ #print(wav_gen.shape, wav_gen.max(), waveform.max(), waveform_p.max())
431
+
432
+ if not os.path.exists(output_dir):
433
+ os.makedirs(output_dir)
434
+ if not os.path.exists(output_dir+"/ref/"):
435
+ os.makedirs(output_dir+"/ref/")
436
+ if not os.path.exists(output_dir+"/gen/"):
437
+ os.makedirs(output_dir+"/gen/")
438
+ if not os.path.exists(output_dir+"/tgt/"):
439
+ os.makedirs(output_dir+"/tgt/")
440
+
441
+ torchaudio.save(output_dir+"/ref/"+str(i+args.start).zfill(8)+".wav", waveform_p[0:1,:], 24000)
442
+ torchaudio.save(output_dir+"/gen/"+str(i+args.start).zfill(8)+".wav", normalize_wav(wav_gen[0:1,:], waveform_p[0:1,:]), 24000)
443
+ torchaudio.save(output_dir+"/tgt/"+str(i+args.start).zfill(8)+".wav", waveform[0:1,:], 24000)
444
+
445
+ if not os.path.exists(output_dir+"/ref_nonorm/"):
446
+ os.makedirs(output_dir+"/ref_nonorm/")
447
+ if not os.path.exists(output_dir+"/gen_nonorm/"):
448
+ os.makedirs(output_dir+"/gen_nonorm/")
449
+ if not os.path.exists(output_dir+"/tgt_nonorm/"):
450
+ os.makedirs(output_dir+"/tgt_nonorm/")
451
+ torchaudio.save(output_dir+"/ref_nonorm/"+str(i+args.start).zfill(8)+".wav", waveform_p[0:1,:], 24000)
452
+ torchaudio.save(output_dir+"/gen_nonorm/"+str(i+args.start).zfill(8)+".wav", wav_gen[0:1,:], 24000)
453
+ torchaudio.save(output_dir+"/tgt_nonorm/"+str(i+args.start).zfill(8)+".wav", waveform[0:1,:], 24000)
454
+
455
+
456
+ """
457
+ --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt
458
+ --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/model_14272.pt
459
+
460
+ CUDA_VISIBLE_DEVICES=0 nohup python src/f5_tts/infer/infer_cli_libritts.py --output_dir outputs_libritts/ --start 0 --end 141 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
461
+ CUDA_VISIBLE_DEVICES=1 nohup python src/f5_tts/infer/infer_cli_libritts.py --output_dir outputs_libritts/ --start 141 --end 282 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
462
+ CUDA_VISIBLE_DEVICES=2 nohup python src/f5_tts/infer/infer_cli_libritts.py --output_dir outputs_libritts/ --start 282 --end 423 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
463
+ CUDA_VISIBLE_DEVICES=3 nohup python src/f5_tts/infer/infer_cli_libritts.py --output_dir outputs_libritts/ --start 423 --end 564 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
464
+ CUDA_VISIBLE_DEVICES=4 nohup python src/f5_tts/infer/infer_cli_libritts.py --output_dir outputs_libritts/ --start 564 --end 705 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
465
+ CUDA_VISIBLE_DEVICES=5 nohup python src/f5_tts/infer/infer_cli_libritts.py --output_dir outputs_libritts/ --start 705 --end 846 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
466
+ CUDA_VISIBLE_DEVICES=6 nohup python src/f5_tts/infer/infer_cli_libritts.py --output_dir outputs_libritts/ --start 846 --end 987 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
467
+ CUDA_VISIBLE_DEVICES=7 nohup python src/f5_tts/infer/infer_cli_libritts.py --output_dir outputs_libritts/ --start 987 --end 1128 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
468
+
469
+ CUDA_VISIBLE_DEVICES=0 nohup python src/f5_tts/infer/infer_cli_libritts.py --output_dir outputs_v2c_ys24_libritts/ --start 0 --end 141 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_ys24/model_14272.pt &
470
+ CUDA_VISIBLE_DEVICES=1 nohup python src/f5_tts/infer/infer_cli_libritts.py --output_dir outputs_v2c_ys24_libritts/ --start 141 --end 282 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_ys24/model_14272.pt &
471
+ CUDA_VISIBLE_DEVICES=2 nohup python src/f5_tts/infer/infer_cli_libritts.py --output_dir outputs_v2c_ys24_libritts/ --start 282 --end 423 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_ys24/model_14272.pt &
472
+ CUDA_VISIBLE_DEVICES=3 nohup python src/f5_tts/infer/infer_cli_libritts.py --output_dir outputs_v2c_ys24_libritts/ --start 423 --end 564 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_ys24/model_14272.pt &
473
+ CUDA_VISIBLE_DEVICES=4 nohup python src/f5_tts/infer/infer_cli_libritts.py --output_dir outputs_v2c_ys24_libritts/ --start 564 --end 705 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_ys24/model_14272.pt &
474
+ CUDA_VISIBLE_DEVICES=5 nohup python src/f5_tts/infer/infer_cli_libritts.py --output_dir outputs_v2c_ys24_libritts/ --start 705 --end 846 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_ys24/model_14272.pt &
475
+ CUDA_VISIBLE_DEVICES=6 nohup python src/f5_tts/infer/infer_cli_libritts.py --output_dir outputs_v2c_ys24_libritts/ --start 846 --end 987 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_ys24/model_14272.pt &
476
+ CUDA_VISIBLE_DEVICES=7 nohup python src/f5_tts/infer/infer_cli_libritts.py --output_dir outputs_v2c_ys24_libritts/ --start 987 --end 1128 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_ys24/model_14272.pt &
477
+ """
478
+
F5-TTS/src/f5_tts/infer/infer_cli_s3.py ADDED
@@ -0,0 +1,571 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import codecs
3
+ import os
4
+ import re
5
+ from datetime import datetime
6
+ from importlib.resources import files
7
+ from pathlib import Path
8
+
9
+ import numpy as np
10
+ import torch
11
+ import soundfile as sf
12
+ import tomli
13
+ from cached_path import cached_path
14
+ from omegaconf import OmegaConf
15
+
16
+ from f5_tts.infer.utils_infer import (
17
+ mel_spec_type,
18
+ target_rms,
19
+ cross_fade_duration,
20
+ nfe_step,
21
+ cfg_strength,
22
+ sway_sampling_coef,
23
+ speed,
24
+ fix_duration,
25
+ infer_process,
26
+ load_model,
27
+ load_vocoder,
28
+ preprocess_ref_audio_text,
29
+ remove_silence_for_generated_wav,
30
+ )
31
+ from f5_tts.model import DiT, UNetT
32
+
33
+
34
+ parser = argparse.ArgumentParser(
35
+ prog="python3 infer-cli.py",
36
+ description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.",
37
+ epilog="Specify options above to override one or more settings from config.",
38
+ )
39
+ parser.add_argument(
40
+ "-c",
41
+ "--config",
42
+ type=str,
43
+ default=os.path.join(files("f5_tts").joinpath("infer/examples/basic"), "basic.toml"),
44
+ help="The configuration file, default see infer/examples/basic/basic.toml",
45
+ )
46
+
47
+
48
+ # Note. Not to provide default value here in order to read default from config file
49
+
50
+ parser.add_argument(
51
+ "-m",
52
+ "--model",
53
+ type=str,
54
+ help="The model name: F5-TTS | E2-TTS",
55
+ )
56
+ parser.add_argument(
57
+ "-mc",
58
+ "--model_cfg",
59
+ type=str,
60
+ help="The path to F5-TTS model config file .yaml",
61
+ )
62
+ parser.add_argument(
63
+ "-p",
64
+ "--ckpt_file",
65
+ type=str,
66
+ help="The path to model checkpoint .pt, leave blank to use default",
67
+ default="/ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_vocos_l44k/pretrained_model_1200000.pt",
68
+ )
69
+ parser.add_argument(
70
+ "-v",
71
+ "--vocab_file",
72
+ type=str,
73
+ help="The path to vocab file .txt, leave blank to use default",
74
+ )
75
+ parser.add_argument(
76
+ "-r",
77
+ "--ref_audio",
78
+ type=str,
79
+ help="The reference audio file.",
80
+ )
81
+ parser.add_argument(
82
+ "-s",
83
+ "--ref_text",
84
+ type=str,
85
+ help="The transcript/subtitle for the reference audio",
86
+ )
87
+ parser.add_argument(
88
+ "-t",
89
+ "--gen_text",
90
+ type=str,
91
+ help="The text to make model synthesize a speech",
92
+ )
93
+ parser.add_argument(
94
+ "-f",
95
+ "--gen_file",
96
+ type=str,
97
+ help="The file with text to generate, will ignore --gen_text",
98
+ )
99
+ parser.add_argument(
100
+ "-o",
101
+ "--output_dir",
102
+ type=str,
103
+ help="The path to output folder",
104
+ )
105
+ parser.add_argument(
106
+ "-w",
107
+ "--output_file",
108
+ type=str,
109
+ help="The name of output file",
110
+ )
111
+ parser.add_argument(
112
+ "--save_chunk",
113
+ action="store_true",
114
+ help="To save each audio chunks during inference",
115
+ )
116
+ parser.add_argument(
117
+ "--remove_silence",
118
+ action="store_true",
119
+ help="To remove long silence found in ouput",
120
+ )
121
+ parser.add_argument(
122
+ "--load_vocoder_from_local",
123
+ action="store_true",
124
+ help="To load vocoder from local dir, default to ../checkpoints/vocos-mel-24khz",
125
+ )
126
+ parser.add_argument(
127
+ "--vocoder_name",
128
+ type=str,
129
+ choices=["vocos", "bigvgan"],
130
+ help=f"Used vocoder name: vocos | bigvgan, default {mel_spec_type}",
131
+ )
132
+ parser.add_argument(
133
+ "--target_rms",
134
+ type=float,
135
+ help=f"Target output speech loudness normalization value, default {target_rms}",
136
+ )
137
+ parser.add_argument(
138
+ "--cross_fade_duration",
139
+ type=float,
140
+ help=f"Duration of cross-fade between audio segments in seconds, default {cross_fade_duration}",
141
+ )
142
+ parser.add_argument(
143
+ "--nfe_step",
144
+ type=int,
145
+ help=f"The number of function evaluation (denoising steps), default {nfe_step}",
146
+ )
147
+ parser.add_argument(
148
+ "--cfg_strength",
149
+ type=float,
150
+ help=f"Classifier-free guidance strength, default {cfg_strength}",
151
+ )
152
+ parser.add_argument(
153
+ "--sway_sampling_coef",
154
+ type=float,
155
+ help=f"Sway Sampling coefficient, default {sway_sampling_coef}",
156
+ )
157
+ parser.add_argument(
158
+ "--speed",
159
+ type=float,
160
+ help=f"The speed of the generated audio, default {speed}",
161
+ )
162
+ parser.add_argument(
163
+ "--fix_duration",
164
+ type=float,
165
+ help=f"Fix the total duration (ref and gen audios) in seconds, default {fix_duration}",
166
+ )
167
+
168
+ parser.add_argument(
169
+ "--start",
170
+ type=int,
171
+ default=0,
172
+ )
173
+ parser.add_argument(
174
+ "--end",
175
+ type=int,
176
+ default=99999999,
177
+ )
178
+
179
+ args = parser.parse_args()
180
+
181
+
182
+ # config file
183
+
184
+ config = tomli.load(open(args.config, "rb"))
185
+
186
+
187
+ # command-line interface parameters
188
+
189
+ model = args.model or config.get("model", "F5-TTS")
190
+ model_cfg = args.model_cfg or config.get("model_cfg", str(files("f5_tts").joinpath("configs/F5TTS_Base_train.yaml")))
191
+ ckpt_file = args.ckpt_file or config.get("ckpt_file", "")
192
+ vocab_file = args.vocab_file or config.get("vocab_file", "")
193
+
194
+ ref_audio = args.ref_audio or config.get("ref_audio", "infer/examples/basic/basic_ref_en.wav")
195
+ ref_text = (
196
+ args.ref_text
197
+ if args.ref_text is not None
198
+ else config.get("ref_text", "Some call me nature, others call me mother nature.")
199
+ )
200
+ gen_text = args.gen_text or config.get("gen_text", "Here we generate something just for test.")
201
+ gen_file = args.gen_file or config.get("gen_file", "")
202
+
203
+ output_dir = args.output_dir or config.get("output_dir", "tests")
204
+ output_file = args.output_file or config.get(
205
+ "output_file", f"infer_cli_{datetime.now().strftime(r'%Y%m%d_%H%M%S')}.wav"
206
+ )
207
+
208
+ save_chunk = args.save_chunk or config.get("save_chunk", False)
209
+ remove_silence = args.remove_silence or config.get("remove_silence", False)
210
+ load_vocoder_from_local = args.load_vocoder_from_local or config.get("load_vocoder_from_local", False)
211
+
212
+ vocoder_name = args.vocoder_name or config.get("vocoder_name", mel_spec_type)
213
+ target_rms = args.target_rms or config.get("target_rms", target_rms)
214
+ cross_fade_duration = args.cross_fade_duration or config.get("cross_fade_duration", cross_fade_duration)
215
+ nfe_step = args.nfe_step or config.get("nfe_step", nfe_step)
216
+ cfg_strength = args.cfg_strength or config.get("cfg_strength", cfg_strength)
217
+ sway_sampling_coef = args.sway_sampling_coef or config.get("sway_sampling_coef", sway_sampling_coef)
218
+ speed = args.speed or config.get("speed", speed)
219
+ fix_duration = args.fix_duration or config.get("fix_duration", fix_duration)
220
+
221
+
222
+ # patches for pip pkg user
223
+ if "infer/examples/" in ref_audio:
224
+ ref_audio = str(files("f5_tts").joinpath(f"{ref_audio}"))
225
+ if "infer/examples/" in gen_file:
226
+ gen_file = str(files("f5_tts").joinpath(f"{gen_file}"))
227
+ if "voices" in config:
228
+ for voice in config["voices"]:
229
+ voice_ref_audio = config["voices"][voice]["ref_audio"]
230
+ if "infer/examples/" in voice_ref_audio:
231
+ config["voices"][voice]["ref_audio"] = str(files("f5_tts").joinpath(f"{voice_ref_audio}"))
232
+
233
+
234
+ # ignore gen_text if gen_file provided
235
+
236
+ if gen_file:
237
+ gen_text = codecs.open(gen_file, "r", "utf-8").read()
238
+
239
+
240
+ # output path
241
+
242
+ wave_path = Path(output_dir) / output_file
243
+ # spectrogram_path = Path(output_dir) / "infer_cli_out.png"
244
+ if save_chunk:
245
+ output_chunk_dir = os.path.join(output_dir, f"{Path(output_file).stem}_chunks")
246
+ if not os.path.exists(output_chunk_dir):
247
+ os.makedirs(output_chunk_dir)
248
+
249
+
250
+ # load vocoder
251
+
252
+ if vocoder_name == "vocos":
253
+ vocoder_local_path = "../checkpoints/vocos-mel-24khz"
254
+ elif vocoder_name == "bigvgan":
255
+ vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
256
+
257
+ vocoder = load_vocoder(vocoder_name=vocoder_name, is_local=load_vocoder_from_local, local_path=vocoder_local_path)
258
+
259
+
260
+ # load TTS model
261
+
262
+ if model == "F5-TTS":
263
+ model_cls = DiT
264
+ model_cfg = OmegaConf.load(model_cfg).model.arch
265
+ if not ckpt_file: # path not specified, download from repo
266
+ if vocoder_name == "vocos":
267
+ repo_name = "F5-TTS"
268
+ exp_name = "F5TTS_Base"
269
+ ckpt_step = 1200000
270
+ ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
271
+ # ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
272
+ elif vocoder_name == "bigvgan":
273
+ repo_name = "F5-TTS"
274
+ exp_name = "F5TTS_Base_bigvgan"
275
+ ckpt_step = 1250000
276
+ ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.pt"))
277
+
278
+ elif model == "E2-TTS":
279
+ assert args.model_cfg is None, "E2-TTS does not support custom model_cfg yet"
280
+ assert vocoder_name == "vocos", "E2-TTS only supports vocoder vocos yet"
281
+ model_cls = UNetT
282
+ model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
283
+ if not ckpt_file: # path not specified, download from repo
284
+ repo_name = "E2-TTS"
285
+ exp_name = "E2TTS_Base"
286
+ ckpt_step = 1200000
287
+ ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
288
+ # ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
289
+
290
+ print(f"Using {model}...")
291
+ ema_model = load_model(model_cls, model_cfg, ckpt_file, mel_spec_type=vocoder_name, vocab_file=vocab_file)
292
+
293
+
294
+ # inference process
295
+
296
+
297
+ def main(ref_audio, ref_text, gen_text, energy):
298
+ main_voice = {"ref_audio": ref_audio, "ref_text": ref_text}
299
+ if "voices" not in config:
300
+ voices = {"main": main_voice}
301
+ else:
302
+ voices = config["voices"]
303
+ voices["main"] = main_voice
304
+ for voice in voices:
305
+ print("Voice:", voice)
306
+ print("ref_audio ", voices[voice]["ref_audio"])
307
+ voices[voice]["ref_audio"], voices[voice]["ref_text"] = preprocess_ref_audio_text(
308
+ voices[voice]["ref_audio"], voices[voice]["ref_text"]
309
+ )
310
+ print("ref_audio_", voices[voice]["ref_audio"], "\n\n")
311
+
312
+ generated_audio_segments = []
313
+ reg1 = r"(?=\[\w+\])"
314
+ chunks = re.split(reg1, gen_text)
315
+ reg2 = r"\[(\w+)\]"
316
+ for text in chunks:
317
+ if not text.strip():
318
+ continue
319
+ match = re.match(reg2, text)
320
+ if match:
321
+ voice = match[1]
322
+ else:
323
+ print("No voice tag found, using main.")
324
+ voice = "main"
325
+ if voice not in voices:
326
+ print(f"Voice {voice} not found, using main.")
327
+ voice = "main"
328
+ text = re.sub(reg2, "", text)
329
+ ref_audio_ = voices[voice]["ref_audio"]
330
+ ref_text_ = voices[voice]["ref_text"]
331
+ gen_text_ = text.strip()
332
+ print(f"Voice: {voice}")
333
+ audio_segment, final_sample_rate, spectragram = infer_process(
334
+ ref_audio_,
335
+ ref_text_,
336
+ gen_text_,
337
+ ema_model,
338
+ vocoder,
339
+ mel_spec_type=vocoder_name,
340
+ target_rms=target_rms,
341
+ cross_fade_duration=cross_fade_duration,
342
+ nfe_step=nfe_step,
343
+ cfg_strength=cfg_strength,
344
+ sway_sampling_coef=sway_sampling_coef,
345
+ speed=speed,
346
+ fix_duration=fix_duration,
347
+ energy=energy,
348
+ )
349
+ generated_audio_segments.append(audio_segment)
350
+
351
+ if save_chunk:
352
+ if len(gen_text_) > 200:
353
+ gen_text_ = gen_text_[:200] + " ... "
354
+ sf.write(
355
+ os.path.join(output_chunk_dir, f"{len(generated_audio_segments)-1}_{gen_text_}.wav"),
356
+ audio_segment,
357
+ final_sample_rate,
358
+ )
359
+
360
+ if generated_audio_segments:
361
+ final_wave = np.concatenate(generated_audio_segments)
362
+ return final_wave, final_sample_rate
363
+
364
+ #if not os.path.exists(output_dir):
365
+ # os.makedirs(output_dir)
366
+
367
+ #with open(wave_path, "wb") as f:
368
+ # sf.write(f.name, final_wave, final_sample_rate)
369
+ # # Remove silence
370
+ # if remove_silence:
371
+ # remove_silence_for_generated_wav(f.name)
372
+ # print(f.name)
373
+
374
+
375
+ import json
376
+ import torchaudio
377
+ from torchmetrics.audio import ScaleInvariantSignalDistortionRatio
378
+ import traceback
379
+
380
+
381
+ si_sdr = ScaleInvariantSignalDistortionRatio()
382
+
383
+
384
+ #def normalize_wav(waveform):
385
+ # waveform = waveform - torch.mean(waveform)
386
+ # waveform = waveform / (torch.max(torch.abs(waveform[0, :])) + 1e-8)
387
+ # return waveform * 0.5
388
+
389
+ def normalize_wav(waveform, waveform_ref):
390
+ waveform = waveform / (torch.max(torch.abs(waveform))) * (torch.max(torch.abs(waveform_ref)))
391
+ return waveform
392
+
393
+
394
+ if __name__ == "__main__":
395
+ #scp1 = "/ailab-train/speech/zhanghaomin/datas/v2cdata/train.scp"
396
+ #scp2 = "/ailab-train/speech/zhanghaomin/datas/v2cdata/test.scp"
397
+ scp2 = "/ailab-train/speech/zhanghaomin/datas/v2cdata/test_s3.scp"
398
+
399
+ #v2a_path = "/ailab-train/speech/zhanghaomin/codes3/MMAudio-main/output_v2c_neg/"
400
+ v2a_path = "/ailab-train/speech/zhanghaomin/codes3/v2a_v2cdata/"
401
+
402
+ #with open(scp1, "r") as fr:
403
+ # lines1 = fr.readlines()
404
+ with open(scp2, "r") as fr:
405
+ lines2 = fr.readlines()
406
+ #lines = lines1 + lines2
407
+ lines = lines2
408
+
409
+ datas2 = []
410
+ for line in lines:
411
+ video_p, txt_p, wav_p, video, txt, wav = line.strip().split("\t")
412
+ assert(video_p == "None")
413
+
414
+ v2a_audio = v2a_path + video.replace("/", "__")[:-4] + ".wav"
415
+ if not os.path.exists(video) or not os.path.exists(wav) or not os.path.exists(v2a_audio):
416
+ continue
417
+
418
+ datas2.append([[video, txt, wav], [video_p, txt_p, wav_p]])
419
+
420
+ texts = []
421
+ cond_lens = []
422
+ prompts = []
423
+ waveforms = []
424
+ infos = []
425
+
426
+ print("datas2", len(datas2))
427
+ if False:
428
+ with open("/ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/data/v2c_test_s3.lst", "w") as fw:
429
+ for i, (data, data_p) in enumerate(datas2):
430
+ video, txt, wav = data
431
+ video_p, txt_p, wav_p = data_p
432
+
433
+ v2a_audio = v2a_path + video.replace("/", "__")[:-4] + ".wav"
434
+ #v2a_audio_p = v2a_path + video_p.replace("/", "__")[:-4] + ".wav"
435
+ assert(video_p == "None")
436
+
437
+ if not os.path.exists(video) or not os.path.exists(wav) or not os.path.exists(v2a_audio):
438
+ continue
439
+ #if not os.path.exists(video_p) or not os.path.exists(wav_p) or not os.path.exists(v2a_audio_p):
440
+ # continue
441
+
442
+ fw.write(wav_p+"\t"+video_p+"\t"+txt_p+"\t"+wav+"\t"+video+"\t"+txt+"\n")
443
+
444
+
445
+ if False:
446
+ sisdr_res = 0
447
+ N = 0
448
+ for i, (data, data_p) in enumerate(datas2):
449
+ video, txt, wav = data
450
+ video_p, txt_p, wav_p = data_p
451
+
452
+ v2a_audio = v2a_path + video.replace("/", "__")[:-4] + ".wav"
453
+ #v2a_audio_p = v2a_path + video_p.replace("/", "__")[:-4] + ".wav"
454
+ assert(video_p == "None")
455
+
456
+ if not os.path.exists(video) or not os.path.exists(wav) or not os.path.exists(v2a_audio):
457
+ continue
458
+ #if not os.path.exists(video_p) or not os.path.exists(wav_p) or not os.path.exists(v2a_audio_p):
459
+ # continue
460
+
461
+ wav_gen = "/ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/outputs/gen/" + str(i).zfill(8) + ".wav"
462
+ waveform_gen, sr_gen = torchaudio.load(wav_gen)
463
+ duration_gen = waveform_gen.shape[-1] / sr_gen
464
+ energy_gen = []
465
+ for i in range(int(duration_gen/(256/24000))):
466
+ energy_gen.append(waveform_gen[0,int(i*sr_gen*(256/24000)):int((i+1)*sr_gen*(256/24000))].abs().mean())
467
+ energy_gen = np.array(energy_gen)
468
+ energy_gen = energy_gen / max(energy_gen)
469
+
470
+ energy = torch.from_numpy(np.load(wav+".npz")["arr_0"])
471
+ #energy_pred = torch.from_numpy(np.load(v2a_audio+".npz")["arr_0"])
472
+ energy_pred = torch.from_numpy(energy_gen)
473
+
474
+ if energy_pred.shape[-1] < energy.shape[0]:
475
+ energy_pred = torch.cat([energy_pred, torch.zeros(energy.shape[0]-energy_pred.shape[0])], dim=0)
476
+ else:
477
+ energy_pred = energy_pred[:energy.shape[0]]
478
+ sisdr = si_sdr(energy_pred, energy)
479
+ #print("sisdr", sisdr)
480
+ sisdr_res += sisdr
481
+ N += 1
482
+ print("sisdr_res", N, sisdr_res/N)
483
+
484
+ if True:
485
+ for i, (data, data_p) in enumerate(datas2[args.start:args.end]):
486
+ video, txt, wav = data
487
+ video_p, txt_p, wav_p = data_p
488
+
489
+ v2a_audio = v2a_path + video.replace("/", "__")[:-4] + ".wav"
490
+ #v2a_audio_p = v2a_path + video_p.replace("/", "__")[:-4] + ".wav"
491
+ assert(video_p == "None")
492
+
493
+ if not os.path.exists(video) or not os.path.exists(wav) or not os.path.exists(v2a_audio):
494
+ continue
495
+ #if not os.path.exists(video_p) or not os.path.exists(wav_p) or not os.path.exists(v2a_audio_p):
496
+ # continue
497
+
498
+ energy = torch.from_numpy(np.load(v2a_audio+".npz")["arr_0"]).unsqueeze(0).unsqueeze(2)
499
+ #energy_p = torch.from_numpy(np.load(v2a_audio_p+".npz")["arr_0"]).unsqueeze(0).unsqueeze(2)
500
+ #print("energy shape", energy_p.shape, energy.shape)
501
+ #energy = torch.cat([energy_p, energy], dim=1)
502
+
503
+ try:
504
+ ####wav_gen, sr_gen = main(wav_p, txt_p, txt, [torch.zeros_like(energy_p), torch.zeros_like(energy)])
505
+ wav_gen, sr_gen = main(wav_p, txt_p, txt, None)
506
+ ####wav_gen, sr_gen = main(wav, txt, txt, None)
507
+ ####wav_gen, sr_gen = main(wav_p, txt_p, txt, [None, energy])
508
+ ####wav_gen, sr_gen = main(wav, txt, txt, [energy.clone(), energy])
509
+ wav_gen = torch.from_numpy(wav_gen).unsqueeze(0)
510
+ assert(sr_gen == 24000)
511
+ except Exception as e:
512
+ traceback.print_exc()
513
+ print("error generation", e, i+args.start, txt_p, txt)
514
+ wav_gen = torch.zeros(1, 24000)
515
+ sr_gen = 24000
516
+
517
+ waveform, sr = torchaudio.load(wav)
518
+ if sr != 24000:
519
+ waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=24000)
520
+ waveform_p, sr = torchaudio.load(wav_p)
521
+ if sr != 24000:
522
+ waveform_p = torchaudio.functional.resample(waveform_p, orig_freq=sr, new_freq=24000)
523
+ #print(wav_gen.shape, wav_gen.max(), waveform.max(), waveform_p.max())
524
+
525
+ if not os.path.exists(output_dir):
526
+ os.makedirs(output_dir)
527
+ if not os.path.exists(output_dir+"/ref/"):
528
+ os.makedirs(output_dir+"/ref/")
529
+ if not os.path.exists(output_dir+"/gen/"):
530
+ os.makedirs(output_dir+"/gen/")
531
+ if not os.path.exists(output_dir+"/tgt/"):
532
+ os.makedirs(output_dir+"/tgt/")
533
+
534
+ torchaudio.save(output_dir+"/ref/"+str(i+args.start).zfill(8)+".wav", waveform_p[0:1,:], 24000)
535
+ torchaudio.save(output_dir+"/gen/"+str(i+args.start).zfill(8)+".wav", normalize_wav(wav_gen[0:1,:], waveform_p[0:1,:]), 24000)
536
+ torchaudio.save(output_dir+"/tgt/"+str(i+args.start).zfill(8)+".wav", waveform[0:1,:], 24000)
537
+
538
+ if not os.path.exists(output_dir+"/ref_nonorm/"):
539
+ os.makedirs(output_dir+"/ref_nonorm/")
540
+ if not os.path.exists(output_dir+"/gen_nonorm/"):
541
+ os.makedirs(output_dir+"/gen_nonorm/")
542
+ if not os.path.exists(output_dir+"/tgt_nonorm/"):
543
+ os.makedirs(output_dir+"/tgt_nonorm/")
544
+ torchaudio.save(output_dir+"/ref_nonorm/"+str(i+args.start).zfill(8)+".wav", waveform_p[0:1,:], 24000)
545
+ torchaudio.save(output_dir+"/gen_nonorm/"+str(i+args.start).zfill(8)+".wav", wav_gen[0:1,:], 24000)
546
+ torchaudio.save(output_dir+"/tgt_nonorm/"+str(i+args.start).zfill(8)+".wav", waveform[0:1,:], 24000)
547
+
548
+
549
+ """
550
+ --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt
551
+ --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/model_14272.pt
552
+
553
+ CUDA_VISIBLE_DEVICES=0 nohup python src/f5_tts/infer/infer_cli_s3.py --output_dir outputs_s3/ --start 0 --end 570 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
554
+ CUDA_VISIBLE_DEVICES=1 nohup python src/f5_tts/infer/infer_cli_s3.py --output_dir outputs_s3/ --start 570 --end 1140 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
555
+ CUDA_VISIBLE_DEVICES=2 nohup python src/f5_tts/infer/infer_cli_s3.py --output_dir outputs_s3/ --start 1140 --end 1710 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
556
+ CUDA_VISIBLE_DEVICES=3 nohup python src/f5_tts/infer/infer_cli_s3.py --output_dir outputs_s3/ --start 1710 --end 2280 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
557
+ CUDA_VISIBLE_DEVICES=4 nohup python src/f5_tts/infer/infer_cli_s3.py --output_dir outputs_s3/ --start 2280 --end 2850 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
558
+ CUDA_VISIBLE_DEVICES=5 nohup python src/f5_tts/infer/infer_cli_s3.py --output_dir outputs_s3/ --start 2850 --end 3420 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
559
+ CUDA_VISIBLE_DEVICES=6 nohup python src/f5_tts/infer/infer_cli_s3.py --output_dir outputs_s3/ --start 3420 --end 3990 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
560
+ CUDA_VISIBLE_DEVICES=7 nohup python src/f5_tts/infer/infer_cli_s3.py --output_dir outputs_s3/ --start 3990 --end 4560 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c/pretrained_model_1200000.pt &
561
+
562
+ CUDA_VISIBLE_DEVICES=0 nohup python src/f5_tts/infer/infer_cli_s3.py --output_dir outputs_v2c_ys24_s3/ --start 0 --end 570 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_ys24/model_14272.pt &
563
+ CUDA_VISIBLE_DEVICES=1 nohup python src/f5_tts/infer/infer_cli_s3.py --output_dir outputs_v2c_ys24_s3/ --start 570 --end 1140 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_ys24/model_14272.pt &
564
+ CUDA_VISIBLE_DEVICES=2 nohup python src/f5_tts/infer/infer_cli_s3.py --output_dir outputs_v2c_ys24_s3/ --start 1140 --end 1710 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_ys24/model_14272.pt &
565
+ CUDA_VISIBLE_DEVICES=3 nohup python src/f5_tts/infer/infer_cli_s3.py --output_dir outputs_v2c_ys24_s3/ --start 1710 --end 2280 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_ys24/model_14272.pt &
566
+ CUDA_VISIBLE_DEVICES=4 nohup python src/f5_tts/infer/infer_cli_s3.py --output_dir outputs_v2c_ys24_s3/ --start 2280 --end 2850 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_ys24/model_14272.pt &
567
+ CUDA_VISIBLE_DEVICES=5 nohup python src/f5_tts/infer/infer_cli_s3.py --output_dir outputs_v2c_ys24_s3/ --start 2850 --end 3420 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_ys24/model_14272.pt &
568
+ CUDA_VISIBLE_DEVICES=6 nohup python src/f5_tts/infer/infer_cli_s3.py --output_dir outputs_v2c_ys24_s3/ --start 3420 --end 3990 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_ys24/model_14272.pt &
569
+ CUDA_VISIBLE_DEVICES=7 nohup python src/f5_tts/infer/infer_cli_s3.py --output_dir outputs_v2c_ys24_s3/ --start 3990 --end 4560 --ckpt_file /ailab-train/speech/zhanghaomin/codes3/F5-TTS-main/ckpts/v2c_ys24/model_14272.pt &
570
+ """
571
+
F5-TTS/src/f5_tts/infer/infer_cli_test.py ADDED
@@ -0,0 +1,486 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import codecs
3
+ import os
4
+ import re
5
+ from datetime import datetime
6
+ from importlib.resources import files
7
+ from pathlib import Path
8
+
9
+ import numpy as np
10
+ import torch
11
+ import soundfile as sf
12
+ import tomli
13
+ from cached_path import cached_path
14
+ from omegaconf import OmegaConf
15
+
16
+ from moviepy.editor import VideoFileClip, AudioFileClip
17
+
18
+
19
+ from f5_tts.infer.utils_infer import (
20
+ mel_spec_type,
21
+ target_rms,
22
+ cross_fade_duration,
23
+ nfe_step,
24
+ cfg_strength,
25
+ sway_sampling_coef,
26
+ speed,
27
+ fix_duration,
28
+ infer_process,
29
+ load_model,
30
+ load_vocoder,
31
+ preprocess_ref_audio_text,
32
+ remove_silence_for_generated_wav,
33
+ )
34
+ from f5_tts.model import DiT, UNetT
35
+
36
+
37
+ parser = argparse.ArgumentParser(
38
+ prog="python3 infer-cli.py",
39
+ description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.",
40
+ epilog="Specify options above to override one or more settings from config.",
41
+ )
42
+ parser.add_argument(
43
+ "-c",
44
+ "--config",
45
+ type=str,
46
+ default=os.path.join(files("f5_tts").joinpath("infer/examples/basic"), "basic.toml"),
47
+ help="The configuration file, default see infer/examples/basic/basic.toml",
48
+ )
49
+
50
+
51
+ # Note. Not to provide default value here in order to read default from config file
52
+
53
+ parser.add_argument(
54
+ "-m",
55
+ "--model",
56
+ type=str,
57
+ help="The model name: F5-TTS | E2-TTS",
58
+ )
59
+ parser.add_argument(
60
+ "-mc",
61
+ "--model_cfg",
62
+ type=str,
63
+ help="The path to F5-TTS model config file .yaml",
64
+ )
65
+ parser.add_argument(
66
+ "-p",
67
+ "--ckpt_file",
68
+ type=str,
69
+ help="The path to model checkpoint .pt, leave blank to use default",
70
+ default="",
71
+ )
72
+ parser.add_argument(
73
+ "-v",
74
+ "--vocab_file",
75
+ type=str,
76
+ help="The path to vocab file .txt, leave blank to use default",
77
+ )
78
+ parser.add_argument(
79
+ "-r",
80
+ "--ref_audio",
81
+ type=str,
82
+ help="The reference audio file.",
83
+ )
84
+ parser.add_argument(
85
+ "-s",
86
+ "--ref_text",
87
+ type=str,
88
+ help="The transcript/subtitle for the reference audio",
89
+ )
90
+ parser.add_argument(
91
+ "-t",
92
+ "--gen_text",
93
+ type=str,
94
+ help="The text to make model synthesize a speech",
95
+ )
96
+ parser.add_argument(
97
+ "-f",
98
+ "--gen_file",
99
+ type=str,
100
+ help="The file with text to generate, will ignore --gen_text",
101
+ )
102
+ parser.add_argument(
103
+ "-o",
104
+ "--output_dir",
105
+ type=str,
106
+ help="The path to output folder",
107
+ )
108
+ parser.add_argument(
109
+ "-w",
110
+ "--output_file",
111
+ type=str,
112
+ help="The name of output file",
113
+ )
114
+ parser.add_argument(
115
+ "--save_chunk",
116
+ action="store_true",
117
+ help="To save each audio chunks during inference",
118
+ )
119
+ parser.add_argument(
120
+ "--remove_silence",
121
+ action="store_true",
122
+ help="To remove long silence found in ouput",
123
+ )
124
+ parser.add_argument(
125
+ "--load_vocoder_from_local",
126
+ action="store_true",
127
+ help="To load vocoder from local dir, default to ../checkpoints/vocos-mel-24khz",
128
+ )
129
+ parser.add_argument(
130
+ "--vocoder_name",
131
+ type=str,
132
+ choices=["vocos", "bigvgan"],
133
+ help=f"Used vocoder name: vocos | bigvgan, default {mel_spec_type}",
134
+ )
135
+ parser.add_argument(
136
+ "--target_rms",
137
+ type=float,
138
+ help=f"Target output speech loudness normalization value, default {target_rms}",
139
+ )
140
+ parser.add_argument(
141
+ "--cross_fade_duration",
142
+ type=float,
143
+ help=f"Duration of cross-fade between audio segments in seconds, default {cross_fade_duration}",
144
+ )
145
+ parser.add_argument(
146
+ "--nfe_step",
147
+ type=int,
148
+ help=f"The number of function evaluation (denoising steps), default {nfe_step}",
149
+ )
150
+ parser.add_argument(
151
+ "--cfg_strength",
152
+ type=float,
153
+ help=f"Classifier-free guidance strength, default {cfg_strength}",
154
+ )
155
+ parser.add_argument(
156
+ "--sway_sampling_coef",
157
+ type=float,
158
+ help=f"Sway Sampling coefficient, default {sway_sampling_coef}",
159
+ )
160
+ parser.add_argument(
161
+ "--speed",
162
+ type=float,
163
+ help=f"The speed of the generated audio, default {speed}",
164
+ )
165
+ parser.add_argument(
166
+ "--fix_duration",
167
+ type=float,
168
+ help=f"Fix the total duration (ref and gen audios) in seconds, default {fix_duration}",
169
+ )
170
+
171
+ parser.add_argument(
172
+ "--start",
173
+ type=int,
174
+ default=0,
175
+ )
176
+ parser.add_argument(
177
+ "--end",
178
+ type=int,
179
+ default=99999999,
180
+ )
181
+ parser.add_argument(
182
+ "--v2a_path",
183
+ type=str,
184
+ default="",
185
+ )
186
+ parser.add_argument(
187
+ "--infer_list",
188
+ type=str,
189
+ default="",
190
+ )
191
+
192
+ args = parser.parse_args()
193
+
194
+
195
+ # config file
196
+
197
+ config = tomli.load(open(args.config, "rb"))
198
+
199
+
200
+ # command-line interface parameters
201
+
202
+ model = args.model or config.get("model", "F5-TTS")
203
+ model_cfg = args.model_cfg or config.get("model_cfg", str(files("f5_tts").joinpath("configs/F5TTS_Base_train.yaml")))
204
+ ckpt_file = args.ckpt_file or config.get("ckpt_file", "")
205
+ vocab_file = args.vocab_file or config.get("vocab_file", "")
206
+
207
+ ref_audio = args.ref_audio or config.get("ref_audio", "infer/examples/basic/basic_ref_en.wav")
208
+ ref_text = (
209
+ args.ref_text
210
+ if args.ref_text is not None
211
+ else config.get("ref_text", "Some call me nature, others call me mother nature.")
212
+ )
213
+ gen_text = args.gen_text or config.get("gen_text", "Here we generate something just for test.")
214
+ gen_file = args.gen_file or config.get("gen_file", "")
215
+
216
+ output_dir = args.output_dir or config.get("output_dir", "tests")
217
+ output_file = args.output_file or config.get(
218
+ "output_file", f"infer_cli_{datetime.now().strftime(r'%Y%m%d_%H%M%S')}.wav"
219
+ )
220
+
221
+ save_chunk = args.save_chunk or config.get("save_chunk", False)
222
+ remove_silence = args.remove_silence or config.get("remove_silence", False)
223
+ load_vocoder_from_local = args.load_vocoder_from_local or config.get("load_vocoder_from_local", False)
224
+
225
+ vocoder_name = args.vocoder_name or config.get("vocoder_name", mel_spec_type)
226
+ target_rms = args.target_rms or config.get("target_rms", target_rms)
227
+ cross_fade_duration = args.cross_fade_duration or config.get("cross_fade_duration", cross_fade_duration)
228
+ nfe_step = args.nfe_step or config.get("nfe_step", nfe_step)
229
+ cfg_strength = args.cfg_strength or config.get("cfg_strength", cfg_strength)
230
+ sway_sampling_coef = args.sway_sampling_coef or config.get("sway_sampling_coef", sway_sampling_coef)
231
+ speed = args.speed or config.get("speed", speed)
232
+ fix_duration = args.fix_duration or config.get("fix_duration", fix_duration)
233
+
234
+
235
+ # patches for pip pkg user
236
+ if "infer/examples/" in ref_audio:
237
+ ref_audio = str(files("f5_tts").joinpath(f"{ref_audio}"))
238
+ if "infer/examples/" in gen_file:
239
+ gen_file = str(files("f5_tts").joinpath(f"{gen_file}"))
240
+ if "voices" in config:
241
+ for voice in config["voices"]:
242
+ voice_ref_audio = config["voices"][voice]["ref_audio"]
243
+ if "infer/examples/" in voice_ref_audio:
244
+ config["voices"][voice]["ref_audio"] = str(files("f5_tts").joinpath(f"{voice_ref_audio}"))
245
+
246
+
247
+ # ignore gen_text if gen_file provided
248
+
249
+ if gen_file:
250
+ gen_text = codecs.open(gen_file, "r", "utf-8").read()
251
+
252
+
253
+ # output path
254
+
255
+ wave_path = Path(output_dir) / output_file
256
+ # spectrogram_path = Path(output_dir) / "infer_cli_out.png"
257
+ if save_chunk:
258
+ output_chunk_dir = os.path.join(output_dir, f"{Path(output_file).stem}_chunks")
259
+ if not os.path.exists(output_chunk_dir):
260
+ os.makedirs(output_chunk_dir)
261
+
262
+
263
+ # load vocoder
264
+
265
+ if vocoder_name == "vocos":
266
+ vocoder_local_path = "../checkpoints/vocos-mel-24khz"
267
+ elif vocoder_name == "bigvgan":
268
+ vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
269
+
270
+ vocoder = load_vocoder(vocoder_name=vocoder_name, is_local=load_vocoder_from_local, local_path=vocoder_local_path)
271
+
272
+
273
+ # load TTS model
274
+
275
+ if model == "F5-TTS":
276
+ model_cls = DiT
277
+ model_cfg = OmegaConf.load(model_cfg).model.arch
278
+ if not ckpt_file: # path not specified, download from repo
279
+ if vocoder_name == "vocos":
280
+ repo_name = "F5-TTS"
281
+ exp_name = "F5TTS_Base"
282
+ ckpt_step = 1200000
283
+ ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
284
+ # ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
285
+ elif vocoder_name == "bigvgan":
286
+ repo_name = "F5-TTS"
287
+ exp_name = "F5TTS_Base_bigvgan"
288
+ ckpt_step = 1250000
289
+ ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.pt"))
290
+
291
+ elif model == "E2-TTS":
292
+ assert args.model_cfg is None, "E2-TTS does not support custom model_cfg yet"
293
+ assert vocoder_name == "vocos", "E2-TTS only supports vocoder vocos yet"
294
+ model_cls = UNetT
295
+ model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
296
+ if not ckpt_file: # path not specified, download from repo
297
+ repo_name = "E2-TTS"
298
+ exp_name = "E2TTS_Base"
299
+ ckpt_step = 1200000
300
+ ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
301
+ # ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
302
+
303
+ print(f"Using {model}...")
304
+ ema_model = load_model(model_cls, model_cfg, ckpt_file, mel_spec_type=vocoder_name, vocab_file=vocab_file)
305
+
306
+
307
+ # inference process
308
+
309
+
310
+ def main(ref_audio, ref_text, gen_text, energy):
311
+ main_voice = {"ref_audio": ref_audio, "ref_text": ref_text}
312
+ if "voices" not in config:
313
+ voices = {"main": main_voice}
314
+ else:
315
+ voices = config["voices"]
316
+ voices["main"] = main_voice
317
+ for voice in voices:
318
+ print("Voice:", voice)
319
+ print("ref_audio ", voices[voice]["ref_audio"])
320
+ voices[voice]["ref_audio"], voices[voice]["ref_text"] = preprocess_ref_audio_text(
321
+ voices[voice]["ref_audio"], voices[voice]["ref_text"]
322
+ )
323
+ print("ref_audio_", voices[voice]["ref_audio"], "\n\n")
324
+
325
+ generated_audio_segments = []
326
+ reg1 = r"(?=\[\w+\])"
327
+ chunks = re.split(reg1, gen_text)
328
+ reg2 = r"\[(\w+)\]"
329
+ for text in chunks:
330
+ if not text.strip():
331
+ continue
332
+ match = re.match(reg2, text)
333
+ if match:
334
+ voice = match[1]
335
+ else:
336
+ print("No voice tag found, using main.")
337
+ voice = "main"
338
+ if voice not in voices:
339
+ print(f"Voice {voice} not found, using main.")
340
+ voice = "main"
341
+ text = re.sub(reg2, "", text)
342
+ ref_audio_ = voices[voice]["ref_audio"]
343
+ ref_text_ = voices[voice]["ref_text"]
344
+ gen_text_ = text.strip()
345
+ print(f"Voice: {voice}")
346
+ audio_segment, final_sample_rate, spectragram = infer_process(
347
+ ref_audio_,
348
+ ref_text_,
349
+ gen_text_,
350
+ ema_model,
351
+ vocoder,
352
+ mel_spec_type=vocoder_name,
353
+ target_rms=target_rms,
354
+ cross_fade_duration=cross_fade_duration,
355
+ nfe_step=nfe_step,
356
+ cfg_strength=cfg_strength,
357
+ sway_sampling_coef=sway_sampling_coef,
358
+ speed=speed,
359
+ fix_duration=fix_duration,
360
+ energy=energy,
361
+ )
362
+ generated_audio_segments.append(audio_segment)
363
+
364
+ if save_chunk:
365
+ if len(gen_text_) > 200:
366
+ gen_text_ = gen_text_[:200] + " ... "
367
+ sf.write(
368
+ os.path.join(output_chunk_dir, f"{len(generated_audio_segments)-1}_{gen_text_}.wav"),
369
+ audio_segment,
370
+ final_sample_rate,
371
+ )
372
+
373
+ if generated_audio_segments:
374
+ final_wave = np.concatenate(generated_audio_segments)
375
+ return final_wave, final_sample_rate
376
+
377
+ #if not os.path.exists(output_dir):
378
+ # os.makedirs(output_dir)
379
+
380
+ #with open(wave_path, "wb") as f:
381
+ # sf.write(f.name, final_wave, final_sample_rate)
382
+ # # Remove silence
383
+ # if remove_silence:
384
+ # remove_silence_for_generated_wav(f.name)
385
+ # print(f.name)
386
+
387
+
388
+ import json
389
+ import torchaudio
390
+ from torchmetrics.audio import ScaleInvariantSignalDistortionRatio
391
+
392
+
393
+ si_sdr = ScaleInvariantSignalDistortionRatio()
394
+
395
+
396
+ #def normalize_wav(waveform):
397
+ # waveform = waveform - torch.mean(waveform)
398
+ # waveform = waveform / (torch.max(torch.abs(waveform[0, :])) + 1e-8)
399
+ # return waveform * 0.5
400
+
401
+ def normalize_wav(waveform, waveform_ref):
402
+ waveform = waveform / (torch.max(torch.abs(waveform))) * (torch.max(torch.abs(waveform_ref)))
403
+ return waveform
404
+
405
+
406
+ if __name__ == "__main__":
407
+ scp = args.infer_list
408
+
409
+ v2a_path = args.v2a_path
410
+
411
+ with open(scp, "r") as fr:
412
+ lines = fr.readlines()
413
+
414
+ datas2 = []
415
+ for line in lines:
416
+ wav_p, video_p, txt_p, wav, video, txt = line.strip().split("\t")
417
+ datas2.append([[video, txt, wav], [video_p, txt_p, wav_p]])
418
+
419
+ print("datas2", len(datas2))
420
+ if True:
421
+ for i, (data, data_p) in enumerate(datas2[args.start:args.end]):
422
+ video, txt, wav = data
423
+ video_p, txt_p, wav_p = data_p
424
+
425
+ v2a_audio = v2a_path + video.replace("/", "__").strip(".") + ".flac"
426
+ v2a_audio_p = v2a_path + video_p.replace("/", "__").strip(".") + ".flac"
427
+
428
+ print(video, wav, v2a_audio, video_p, wav_p, v2a_audio_p)
429
+
430
+ if not os.path.exists(video) or not os.path.exists(wav) or not os.path.exists(v2a_audio):
431
+ continue
432
+ if not os.path.exists(video_p) or not os.path.exists(wav_p) or not os.path.exists(v2a_audio_p):
433
+ continue
434
+
435
+ energy = torch.from_numpy(np.load(v2a_audio+".npz")["arr_0"]).unsqueeze(0).unsqueeze(2)
436
+ energy_p = torch.from_numpy(np.load(v2a_audio_p+".npz")["arr_0"]).unsqueeze(0).unsqueeze(2)
437
+ #print("energy shape", energy_p.shape, energy.shape)
438
+ #energy = torch.cat([energy_p, energy], dim=1)
439
+
440
+ try:
441
+ ####wav_gen, sr_gen = main(wav_p, txt_p, txt, [torch.zeros_like(energy_p), torch.zeros_like(energy)])
442
+ ####wav_gen, sr_gen = main(wav_p, txt_p, txt, None)
443
+ ####wav_gen, sr_gen = main(wav, txt, txt, None)
444
+ wav_gen, sr_gen = main(wav_p, txt_p, txt, [energy_p, energy])
445
+ ####wav_gen, sr_gen = main(wav, txt, txt, [energy.clone(), energy])
446
+ wav_gen = torch.from_numpy(wav_gen).unsqueeze(0)
447
+ assert(sr_gen == 24000)
448
+ except:
449
+ print("error generation", i+args.start, txt_p, txt)
450
+ wav_gen = torch.zeros(1, 24000)
451
+ sr_gen = 24000
452
+
453
+ waveform, sr = torchaudio.load(wav)
454
+ if sr != 24000:
455
+ waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=24000)
456
+ waveform_p, sr = torchaudio.load(wav_p)
457
+ if sr != 24000:
458
+ waveform_p = torchaudio.functional.resample(waveform_p, orig_freq=sr, new_freq=24000)
459
+ #print(wav_gen.shape, wav_gen.max(), waveform.max(), waveform_p.max())
460
+
461
+ if not os.path.exists(output_dir):
462
+ os.makedirs(output_dir)
463
+ if not os.path.exists(output_dir+"/ref/"):
464
+ os.makedirs(output_dir+"/ref/")
465
+ if not os.path.exists(output_dir+"/gen/"):
466
+ os.makedirs(output_dir+"/gen/")
467
+ if not os.path.exists(output_dir+"/tgt/"):
468
+ os.makedirs(output_dir+"/tgt/")
469
+
470
+ torchaudio.save(output_dir+"/ref/"+str(i+args.start).zfill(8)+".wav", waveform_p[0:1,:], 24000)
471
+ torchaudio.save(output_dir+"/gen/"+str(i+args.start).zfill(8)+".wav", normalize_wav(wav_gen[0:1,:], waveform_p[0:1,:]), 24000)
472
+ torchaudio.save(output_dir+"/tgt/"+str(i+args.start).zfill(8)+".wav", waveform[0:1,:], 24000)
473
+
474
+ if not os.path.exists(output_dir+"/videos/"):
475
+ os.makedirs(output_dir+"/videos/")
476
+
477
+ video_clip = VideoFileClip(video)
478
+ audio_clip = AudioFileClip(wav)
479
+ audio_gen_clip = AudioFileClip(output_dir+"/gen/" + str(i+args.start).zfill(8) + ".wav")
480
+ print("video audio durations", video_clip.duration, audio_clip.duration, audio_gen_clip.duration)
481
+ os.system("cp " + video + " " + output_dir+"/videos/" + str(i+args.start).zfill(8) + ".mp4")
482
+ video_clip_gt = video_clip.set_audio(audio_clip)
483
+ video_clip_gen = video_clip.set_audio(audio_gen_clip)
484
+ video_clip_gt.write_videofile(output_dir+"/videos/" + str(i+args.start).zfill(8) + ".gt.mp4", codec="libx264", audio_codec="aac")
485
+ video_clip_gen.write_videofile(output_dir+"/videos/" + str(i+args.start).zfill(8) + ".gen.mp4", codec="libx264", audio_codec="aac")
486
+
F5-TTS/src/f5_tts/infer/infer_cli_tts_test.py ADDED
@@ -0,0 +1,440 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import codecs
3
+ import os
4
+ import re
5
+ from datetime import datetime
6
+ from importlib.resources import files
7
+ from pathlib import Path
8
+
9
+ import numpy as np
10
+ import torch
11
+ import soundfile as sf
12
+ import tomli
13
+ from cached_path import cached_path
14
+ from omegaconf import OmegaConf
15
+
16
+ from f5_tts.infer.utils_infer import (
17
+ mel_spec_type,
18
+ target_rms,
19
+ cross_fade_duration,
20
+ nfe_step,
21
+ cfg_strength,
22
+ sway_sampling_coef,
23
+ speed,
24
+ fix_duration,
25
+ infer_process,
26
+ load_model,
27
+ load_vocoder,
28
+ preprocess_ref_audio_text,
29
+ remove_silence_for_generated_wav,
30
+ )
31
+ from f5_tts.model import DiT, UNetT
32
+
33
+
34
+ parser = argparse.ArgumentParser(
35
+ prog="python3 infer-cli.py",
36
+ description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.",
37
+ epilog="Specify options above to override one or more settings from config.",
38
+ )
39
+ parser.add_argument(
40
+ "-c",
41
+ "--config",
42
+ type=str,
43
+ default=os.path.join(files("f5_tts").joinpath("infer/examples/basic"), "basic.toml"),
44
+ help="The configuration file, default see infer/examples/basic/basic.toml",
45
+ )
46
+
47
+
48
+ # Note. Not to provide default value here in order to read default from config file
49
+
50
+ parser.add_argument(
51
+ "-m",
52
+ "--model",
53
+ type=str,
54
+ help="The model name: F5-TTS | E2-TTS",
55
+ )
56
+ parser.add_argument(
57
+ "-mc",
58
+ "--model_cfg",
59
+ type=str,
60
+ help="The path to F5-TTS model config file .yaml",
61
+ )
62
+ parser.add_argument(
63
+ "-p",
64
+ "--ckpt_file",
65
+ type=str,
66
+ help="The path to model checkpoint .pt, leave blank to use default",
67
+ default="",
68
+ )
69
+ parser.add_argument(
70
+ "-v",
71
+ "--vocab_file",
72
+ type=str,
73
+ help="The path to vocab file .txt, leave blank to use default",
74
+ )
75
+ parser.add_argument(
76
+ "-r",
77
+ "--ref_audio",
78
+ type=str,
79
+ help="The reference audio file.",
80
+ )
81
+ parser.add_argument(
82
+ "-s",
83
+ "--ref_text",
84
+ type=str,
85
+ help="The transcript/subtitle for the reference audio",
86
+ )
87
+ parser.add_argument(
88
+ "-t",
89
+ "--gen_text",
90
+ type=str,
91
+ help="The text to make model synthesize a speech",
92
+ )
93
+ parser.add_argument(
94
+ "-f",
95
+ "--gen_file",
96
+ type=str,
97
+ help="The file with text to generate, will ignore --gen_text",
98
+ )
99
+ parser.add_argument(
100
+ "-o",
101
+ "--output_dir",
102
+ type=str,
103
+ help="The path to output folder",
104
+ )
105
+ parser.add_argument(
106
+ "-w",
107
+ "--output_file",
108
+ type=str,
109
+ help="The name of output file",
110
+ )
111
+ parser.add_argument(
112
+ "--save_chunk",
113
+ action="store_true",
114
+ help="To save each audio chunks during inference",
115
+ )
116
+ parser.add_argument(
117
+ "--remove_silence",
118
+ action="store_true",
119
+ help="To remove long silence found in ouput",
120
+ )
121
+ parser.add_argument(
122
+ "--load_vocoder_from_local",
123
+ action="store_true",
124
+ help="To load vocoder from local dir, default to ../checkpoints/vocos-mel-24khz",
125
+ )
126
+ parser.add_argument(
127
+ "--vocoder_name",
128
+ type=str,
129
+ choices=["vocos", "bigvgan"],
130
+ help=f"Used vocoder name: vocos | bigvgan, default {mel_spec_type}",
131
+ )
132
+ parser.add_argument(
133
+ "--target_rms",
134
+ type=float,
135
+ help=f"Target output speech loudness normalization value, default {target_rms}",
136
+ )
137
+ parser.add_argument(
138
+ "--cross_fade_duration",
139
+ type=float,
140
+ help=f"Duration of cross-fade between audio segments in seconds, default {cross_fade_duration}",
141
+ )
142
+ parser.add_argument(
143
+ "--nfe_step",
144
+ type=int,
145
+ help=f"The number of function evaluation (denoising steps), default {nfe_step}",
146
+ )
147
+ parser.add_argument(
148
+ "--cfg_strength",
149
+ type=float,
150
+ help=f"Classifier-free guidance strength, default {cfg_strength}",
151
+ )
152
+ parser.add_argument(
153
+ "--sway_sampling_coef",
154
+ type=float,
155
+ help=f"Sway Sampling coefficient, default {sway_sampling_coef}",
156
+ )
157
+ parser.add_argument(
158
+ "--speed",
159
+ type=float,
160
+ help=f"The speed of the generated audio, default {speed}",
161
+ )
162
+ parser.add_argument(
163
+ "--fix_duration",
164
+ type=float,
165
+ help=f"Fix the total duration (ref and gen audios) in seconds, default {fix_duration}",
166
+ )
167
+
168
+ parser.add_argument(
169
+ "--start",
170
+ type=int,
171
+ default=0,
172
+ )
173
+ parser.add_argument(
174
+ "--end",
175
+ type=int,
176
+ default=99999999,
177
+ )
178
+ parser.add_argument(
179
+ "--infer_list",
180
+ type=str,
181
+ default="",
182
+ )
183
+
184
+ args = parser.parse_args()
185
+
186
+
187
+ # config file
188
+
189
+ config = tomli.load(open(args.config, "rb"))
190
+
191
+
192
+ # command-line interface parameters
193
+
194
+ model = args.model or config.get("model", "F5-TTS")
195
+ model_cfg = args.model_cfg or config.get("model_cfg", str(files("f5_tts").joinpath("configs/F5TTS_Base_train.yaml")))
196
+ ckpt_file = args.ckpt_file or config.get("ckpt_file", "")
197
+ vocab_file = args.vocab_file or config.get("vocab_file", "")
198
+
199
+ ref_audio = args.ref_audio or config.get("ref_audio", "infer/examples/basic/basic_ref_en.wav")
200
+ ref_text = (
201
+ args.ref_text
202
+ if args.ref_text is not None
203
+ else config.get("ref_text", "Some call me nature, others call me mother nature.")
204
+ )
205
+ gen_text = args.gen_text or config.get("gen_text", "Here we generate something just for test.")
206
+ gen_file = args.gen_file or config.get("gen_file", "")
207
+
208
+ output_dir = args.output_dir or config.get("output_dir", "tests")
209
+ output_file = args.output_file or config.get(
210
+ "output_file", f"infer_cli_{datetime.now().strftime(r'%Y%m%d_%H%M%S')}.wav"
211
+ )
212
+
213
+ save_chunk = args.save_chunk or config.get("save_chunk", False)
214
+ remove_silence = args.remove_silence or config.get("remove_silence", False)
215
+ load_vocoder_from_local = args.load_vocoder_from_local or config.get("load_vocoder_from_local", False)
216
+
217
+ vocoder_name = args.vocoder_name or config.get("vocoder_name", mel_spec_type)
218
+ target_rms = args.target_rms or config.get("target_rms", target_rms)
219
+ cross_fade_duration = args.cross_fade_duration or config.get("cross_fade_duration", cross_fade_duration)
220
+ nfe_step = args.nfe_step or config.get("nfe_step", nfe_step)
221
+ cfg_strength = args.cfg_strength or config.get("cfg_strength", cfg_strength)
222
+ sway_sampling_coef = args.sway_sampling_coef or config.get("sway_sampling_coef", sway_sampling_coef)
223
+ speed = args.speed or config.get("speed", speed)
224
+ fix_duration = args.fix_duration or config.get("fix_duration", fix_duration)
225
+
226
+
227
+ # patches for pip pkg user
228
+ if "infer/examples/" in ref_audio:
229
+ ref_audio = str(files("f5_tts").joinpath(f"{ref_audio}"))
230
+ if "infer/examples/" in gen_file:
231
+ gen_file = str(files("f5_tts").joinpath(f"{gen_file}"))
232
+ if "voices" in config:
233
+ for voice in config["voices"]:
234
+ voice_ref_audio = config["voices"][voice]["ref_audio"]
235
+ if "infer/examples/" in voice_ref_audio:
236
+ config["voices"][voice]["ref_audio"] = str(files("f5_tts").joinpath(f"{voice_ref_audio}"))
237
+
238
+
239
+ # ignore gen_text if gen_file provided
240
+
241
+ if gen_file:
242
+ gen_text = codecs.open(gen_file, "r", "utf-8").read()
243
+
244
+
245
+ # output path
246
+
247
+ wave_path = Path(output_dir) / output_file
248
+ # spectrogram_path = Path(output_dir) / "infer_cli_out.png"
249
+ if save_chunk:
250
+ output_chunk_dir = os.path.join(output_dir, f"{Path(output_file).stem}_chunks")
251
+ if not os.path.exists(output_chunk_dir):
252
+ os.makedirs(output_chunk_dir)
253
+
254
+
255
+ # load vocoder
256
+
257
+ if vocoder_name == "vocos":
258
+ vocoder_local_path = "../checkpoints/vocos-mel-24khz"
259
+ elif vocoder_name == "bigvgan":
260
+ vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
261
+
262
+ vocoder = load_vocoder(vocoder_name=vocoder_name, is_local=load_vocoder_from_local, local_path=vocoder_local_path)
263
+
264
+
265
+ # load TTS model
266
+
267
+ if model == "F5-TTS":
268
+ model_cls = DiT
269
+ model_cfg = OmegaConf.load(model_cfg).model.arch
270
+ if not ckpt_file: # path not specified, download from repo
271
+ if vocoder_name == "vocos":
272
+ repo_name = "F5-TTS"
273
+ exp_name = "F5TTS_Base"
274
+ ckpt_step = 1200000
275
+ ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
276
+ # ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
277
+ elif vocoder_name == "bigvgan":
278
+ repo_name = "F5-TTS"
279
+ exp_name = "F5TTS_Base_bigvgan"
280
+ ckpt_step = 1250000
281
+ ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.pt"))
282
+
283
+ elif model == "E2-TTS":
284
+ assert args.model_cfg is None, "E2-TTS does not support custom model_cfg yet"
285
+ assert vocoder_name == "vocos", "E2-TTS only supports vocoder vocos yet"
286
+ model_cls = UNetT
287
+ model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
288
+ if not ckpt_file: # path not specified, download from repo
289
+ repo_name = "E2-TTS"
290
+ exp_name = "E2TTS_Base"
291
+ ckpt_step = 1200000
292
+ ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
293
+ # ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
294
+
295
+ print(f"Using {model}...")
296
+ ema_model = load_model(model_cls, model_cfg, ckpt_file, mel_spec_type=vocoder_name, vocab_file=vocab_file)
297
+
298
+
299
+ # inference process
300
+
301
+
302
+ def main(ref_audio, ref_text, gen_text, energy):
303
+ main_voice = {"ref_audio": ref_audio, "ref_text": ref_text}
304
+ if "voices" not in config:
305
+ voices = {"main": main_voice}
306
+ else:
307
+ voices = config["voices"]
308
+ voices["main"] = main_voice
309
+ for voice in voices:
310
+ print("Voice:", voice)
311
+ print("ref_audio ", voices[voice]["ref_audio"])
312
+ voices[voice]["ref_audio"], voices[voice]["ref_text"] = preprocess_ref_audio_text(
313
+ voices[voice]["ref_audio"], voices[voice]["ref_text"]
314
+ )
315
+ print("ref_audio_", voices[voice]["ref_audio"], "\n\n")
316
+
317
+ generated_audio_segments = []
318
+ reg1 = r"(?=\[\w+\])"
319
+ chunks = re.split(reg1, gen_text)
320
+ reg2 = r"\[(\w+)\]"
321
+ for text in chunks:
322
+ if not text.strip():
323
+ continue
324
+ match = re.match(reg2, text)
325
+ if match:
326
+ voice = match[1]
327
+ else:
328
+ print("No voice tag found, using main.")
329
+ voice = "main"
330
+ if voice not in voices:
331
+ print(f"Voice {voice} not found, using main.")
332
+ voice = "main"
333
+ text = re.sub(reg2, "", text)
334
+ ref_audio_ = voices[voice]["ref_audio"]
335
+ ref_text_ = voices[voice]["ref_text"]
336
+ gen_text_ = text.strip()
337
+ print(f"Voice: {voice}")
338
+ audio_segment, final_sample_rate, spectragram = infer_process(
339
+ ref_audio_,
340
+ ref_text_,
341
+ gen_text_,
342
+ ema_model,
343
+ vocoder,
344
+ mel_spec_type=vocoder_name,
345
+ target_rms=target_rms,
346
+ cross_fade_duration=cross_fade_duration,
347
+ nfe_step=nfe_step,
348
+ cfg_strength=cfg_strength,
349
+ sway_sampling_coef=sway_sampling_coef,
350
+ speed=speed,
351
+ fix_duration=fix_duration,
352
+ energy=energy,
353
+ )
354
+ generated_audio_segments.append(audio_segment)
355
+
356
+ if save_chunk:
357
+ if len(gen_text_) > 200:
358
+ gen_text_ = gen_text_[:200] + " ... "
359
+ sf.write(
360
+ os.path.join(output_chunk_dir, f"{len(generated_audio_segments)-1}_{gen_text_}.wav"),
361
+ audio_segment,
362
+ final_sample_rate,
363
+ )
364
+
365
+ if generated_audio_segments:
366
+ final_wave = np.concatenate(generated_audio_segments)
367
+ return final_wave, final_sample_rate
368
+
369
+ #if not os.path.exists(output_dir):
370
+ # os.makedirs(output_dir)
371
+
372
+ #with open(wave_path, "wb") as f:
373
+ # sf.write(f.name, final_wave, final_sample_rate)
374
+ # # Remove silence
375
+ # if remove_silence:
376
+ # remove_silence_for_generated_wav(f.name)
377
+ # print(f.name)
378
+
379
+
380
+ import json
381
+ import torchaudio
382
+ from torchmetrics.audio import ScaleInvariantSignalDistortionRatio
383
+
384
+
385
+ si_sdr = ScaleInvariantSignalDistortionRatio()
386
+
387
+
388
+ #def normalize_wav(waveform):
389
+ # waveform = waveform - torch.mean(waveform)
390
+ # waveform = waveform / (torch.max(torch.abs(waveform[0, :])) + 1e-8)
391
+ # return waveform * 0.5
392
+
393
+ def normalize_wav(waveform, waveform_ref):
394
+ waveform = waveform / (torch.max(torch.abs(waveform))) * (torch.max(torch.abs(waveform_ref)))
395
+ return waveform
396
+
397
+
398
+ if __name__ == "__main__":
399
+
400
+ scp = args.infer_list
401
+
402
+ with open(scp, "r") as fr:
403
+ lines = fr.readlines()
404
+
405
+ datas2 = []
406
+ for idx, line in enumerate(lines):
407
+ wav_p, dur_p, text_p, wav, dur, text = line.strip().split("\t")
408
+ datas2.append(((text, wav), (text_p, wav_p)))
409
+
410
+
411
+ if True:
412
+ for i, (data, data_p) in enumerate(datas2[args.start:args.end]):
413
+ txt, wav = data
414
+ txt_p, wav_p = data_p
415
+
416
+ wav_gen, sr_gen = main(wav_p, txt_p, txt, None)
417
+ wav_gen = torch.from_numpy(wav_gen).unsqueeze(0)
418
+ assert(sr_gen == 24000)
419
+
420
+ waveform, sr = torchaudio.load(wav)
421
+ if sr != 24000:
422
+ waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=24000)
423
+ waveform_p, sr = torchaudio.load(wav_p)
424
+ if sr != 24000:
425
+ waveform_p = torchaudio.functional.resample(waveform_p, orig_freq=sr, new_freq=24000)
426
+ #print(wav_gen.shape, wav_gen.max(), waveform.max(), waveform_p.max())
427
+
428
+ if not os.path.exists(output_dir):
429
+ os.makedirs(output_dir)
430
+ if not os.path.exists(output_dir+"/ref/"):
431
+ os.makedirs(output_dir+"/ref/")
432
+ if not os.path.exists(output_dir+"/gen/"):
433
+ os.makedirs(output_dir+"/gen/")
434
+ if not os.path.exists(output_dir+"/tgt/"):
435
+ os.makedirs(output_dir+"/tgt/")
436
+
437
+ torchaudio.save(output_dir+"/ref/"+str(i+args.start).zfill(8)+".wav", waveform_p[0:1,:], 24000)
438
+ torchaudio.save(output_dir+"/gen/"+str(i+args.start).zfill(8)+".wav", normalize_wav(wav_gen[0:1,:], waveform_p[0:1,:]), 24000)
439
+ torchaudio.save(output_dir+"/tgt/"+str(i+args.start).zfill(8)+".wav", waveform[0:1,:], 24000)
440
+
F5-TTS/src/f5_tts/infer/infer_gradio.py ADDED
@@ -0,0 +1,888 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ruff: noqa: E402
2
+ # Above allows ruff to ignore E402: module level import not at top of file
3
+
4
+ import json
5
+ import re
6
+ import tempfile
7
+ from collections import OrderedDict
8
+ from importlib.resources import files
9
+
10
+ import click
11
+ import gradio as gr
12
+ import numpy as np
13
+ import soundfile as sf
14
+ import torchaudio
15
+ from cached_path import cached_path
16
+ from transformers import AutoModelForCausalLM, AutoTokenizer
17
+
18
+ try:
19
+ import spaces
20
+
21
+ USING_SPACES = True
22
+ except ImportError:
23
+ USING_SPACES = False
24
+
25
+
26
+ def gpu_decorator(func):
27
+ if USING_SPACES:
28
+ return spaces.GPU(func)
29
+ else:
30
+ return func
31
+
32
+
33
+ from f5_tts.model import DiT, UNetT
34
+ from f5_tts.infer.utils_infer import (
35
+ load_vocoder,
36
+ load_model,
37
+ preprocess_ref_audio_text,
38
+ infer_process,
39
+ remove_silence_for_generated_wav,
40
+ save_spectrogram,
41
+ )
42
+
43
+
44
+ DEFAULT_TTS_MODEL = "F5-TTS"
45
+ tts_model_choice = DEFAULT_TTS_MODEL
46
+
47
+ DEFAULT_TTS_MODEL_CFG = [
48
+ "hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors",
49
+ "hf://SWivid/F5-TTS/F5TTS_Base/vocab.txt",
50
+ json.dumps(dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)),
51
+ ]
52
+
53
+
54
+ # load models
55
+
56
+ vocoder = load_vocoder()
57
+
58
+
59
+ def load_f5tts(ckpt_path=str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))):
60
+ F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
61
+ return load_model(DiT, F5TTS_model_cfg, ckpt_path)
62
+
63
+
64
+ def load_e2tts(ckpt_path=str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))):
65
+ E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
66
+ return load_model(UNetT, E2TTS_model_cfg, ckpt_path)
67
+
68
+
69
+ def load_custom(ckpt_path: str, vocab_path="", model_cfg=None):
70
+ ckpt_path, vocab_path = ckpt_path.strip(), vocab_path.strip()
71
+ if ckpt_path.startswith("hf://"):
72
+ ckpt_path = str(cached_path(ckpt_path))
73
+ if vocab_path.startswith("hf://"):
74
+ vocab_path = str(cached_path(vocab_path))
75
+ if model_cfg is None:
76
+ model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
77
+ return load_model(DiT, model_cfg, ckpt_path, vocab_file=vocab_path)
78
+
79
+
80
+ F5TTS_ema_model = load_f5tts()
81
+ E2TTS_ema_model = load_e2tts() if USING_SPACES else None
82
+ custom_ema_model, pre_custom_path = None, ""
83
+
84
+ chat_model_state = None
85
+ chat_tokenizer_state = None
86
+
87
+
88
+ @gpu_decorator
89
+ def generate_response(messages, model, tokenizer):
90
+ """Generate response using Qwen"""
91
+ text = tokenizer.apply_chat_template(
92
+ messages,
93
+ tokenize=False,
94
+ add_generation_prompt=True,
95
+ )
96
+
97
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
98
+ generated_ids = model.generate(
99
+ **model_inputs,
100
+ max_new_tokens=512,
101
+ temperature=0.7,
102
+ top_p=0.95,
103
+ )
104
+
105
+ generated_ids = [
106
+ output_ids[len(input_ids) :] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
107
+ ]
108
+ return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
109
+
110
+
111
+ @gpu_decorator
112
+ def infer(
113
+ ref_audio_orig,
114
+ ref_text,
115
+ gen_text,
116
+ model,
117
+ remove_silence,
118
+ cross_fade_duration=0.15,
119
+ nfe_step=32,
120
+ speed=1,
121
+ show_info=gr.Info,
122
+ ):
123
+ if not ref_audio_orig:
124
+ gr.Warning("Please provide reference audio.")
125
+ return gr.update(), gr.update(), ref_text
126
+
127
+ if not gen_text.strip():
128
+ gr.Warning("Please enter text to generate.")
129
+ return gr.update(), gr.update(), ref_text
130
+
131
+ ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info)
132
+
133
+ if model == "F5-TTS":
134
+ ema_model = F5TTS_ema_model
135
+ elif model == "E2-TTS":
136
+ global E2TTS_ema_model
137
+ if E2TTS_ema_model is None:
138
+ show_info("Loading E2-TTS model...")
139
+ E2TTS_ema_model = load_e2tts()
140
+ ema_model = E2TTS_ema_model
141
+ elif isinstance(model, list) and model[0] == "Custom":
142
+ assert not USING_SPACES, "Only official checkpoints allowed in Spaces."
143
+ global custom_ema_model, pre_custom_path
144
+ if pre_custom_path != model[1]:
145
+ show_info("Loading Custom TTS model...")
146
+ custom_ema_model = load_custom(model[1], vocab_path=model[2], model_cfg=model[3])
147
+ pre_custom_path = model[1]
148
+ ema_model = custom_ema_model
149
+
150
+ final_wave, final_sample_rate, combined_spectrogram = infer_process(
151
+ ref_audio,
152
+ ref_text,
153
+ gen_text,
154
+ ema_model,
155
+ vocoder,
156
+ cross_fade_duration=cross_fade_duration,
157
+ nfe_step=nfe_step,
158
+ speed=speed,
159
+ show_info=show_info,
160
+ progress=gr.Progress(),
161
+ )
162
+
163
+ # Remove silence
164
+ if remove_silence:
165
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
166
+ sf.write(f.name, final_wave, final_sample_rate)
167
+ remove_silence_for_generated_wav(f.name)
168
+ final_wave, _ = torchaudio.load(f.name)
169
+ final_wave = final_wave.squeeze().cpu().numpy()
170
+
171
+ # Save the spectrogram
172
+ with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
173
+ spectrogram_path = tmp_spectrogram.name
174
+ save_spectrogram(combined_spectrogram, spectrogram_path)
175
+
176
+ return (final_sample_rate, final_wave), spectrogram_path, ref_text
177
+
178
+
179
+ with gr.Blocks() as app_credits:
180
+ gr.Markdown("""
181
+ # Credits
182
+
183
+ * [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
184
+ * [RootingInLoad](https://github.com/RootingInLoad) for initial chunk generation and podcast app exploration
185
+ * [jpgallegoar](https://github.com/jpgallegoar) for multiple speech-type generation & voice chat
186
+ """)
187
+ with gr.Blocks() as app_tts:
188
+ gr.Markdown("# Batched TTS")
189
+ ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
190
+ gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
191
+ generate_btn = gr.Button("Synthesize", variant="primary")
192
+ with gr.Accordion("Advanced Settings", open=False):
193
+ ref_text_input = gr.Textbox(
194
+ label="Reference Text",
195
+ info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.",
196
+ lines=2,
197
+ )
198
+ remove_silence = gr.Checkbox(
199
+ label="Remove Silences",
200
+ info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.",
201
+ value=False,
202
+ )
203
+ speed_slider = gr.Slider(
204
+ label="Speed",
205
+ minimum=0.3,
206
+ maximum=2.0,
207
+ value=1.0,
208
+ step=0.1,
209
+ info="Adjust the speed of the audio.",
210
+ )
211
+ nfe_slider = gr.Slider(
212
+ label="NFE Steps",
213
+ minimum=4,
214
+ maximum=64,
215
+ value=32,
216
+ step=2,
217
+ info="Set the number of denoising steps.",
218
+ )
219
+ cross_fade_duration_slider = gr.Slider(
220
+ label="Cross-Fade Duration (s)",
221
+ minimum=0.0,
222
+ maximum=1.0,
223
+ value=0.15,
224
+ step=0.01,
225
+ info="Set the duration of the cross-fade between audio clips.",
226
+ )
227
+
228
+ audio_output = gr.Audio(label="Synthesized Audio")
229
+ spectrogram_output = gr.Image(label="Spectrogram")
230
+
231
+ @gpu_decorator
232
+ def basic_tts(
233
+ ref_audio_input,
234
+ ref_text_input,
235
+ gen_text_input,
236
+ remove_silence,
237
+ cross_fade_duration_slider,
238
+ nfe_slider,
239
+ speed_slider,
240
+ ):
241
+ audio_out, spectrogram_path, ref_text_out = infer(
242
+ ref_audio_input,
243
+ ref_text_input,
244
+ gen_text_input,
245
+ tts_model_choice,
246
+ remove_silence,
247
+ cross_fade_duration=cross_fade_duration_slider,
248
+ nfe_step=nfe_slider,
249
+ speed=speed_slider,
250
+ )
251
+ return audio_out, spectrogram_path, ref_text_out
252
+
253
+ generate_btn.click(
254
+ basic_tts,
255
+ inputs=[
256
+ ref_audio_input,
257
+ ref_text_input,
258
+ gen_text_input,
259
+ remove_silence,
260
+ cross_fade_duration_slider,
261
+ nfe_slider,
262
+ speed_slider,
263
+ ],
264
+ outputs=[audio_output, spectrogram_output, ref_text_input],
265
+ )
266
+
267
+
268
+ def parse_speechtypes_text(gen_text):
269
+ # Pattern to find {speechtype}
270
+ pattern = r"\{(.*?)\}"
271
+
272
+ # Split the text by the pattern
273
+ tokens = re.split(pattern, gen_text)
274
+
275
+ segments = []
276
+
277
+ current_style = "Regular"
278
+
279
+ for i in range(len(tokens)):
280
+ if i % 2 == 0:
281
+ # This is text
282
+ text = tokens[i].strip()
283
+ if text:
284
+ segments.append({"style": current_style, "text": text})
285
+ else:
286
+ # This is style
287
+ style = tokens[i].strip()
288
+ current_style = style
289
+
290
+ return segments
291
+
292
+
293
+ with gr.Blocks() as app_multistyle:
294
+ # New section for multistyle generation
295
+ gr.Markdown(
296
+ """
297
+ # Multiple Speech-Type Generation
298
+
299
+ This section allows you to generate multiple speech types or multiple people's voices. Enter your text in the format shown below, and the system will generate speech using the appropriate type. If unspecified, the model will use the regular speech type. The current speech type will be used until the next speech type is specified.
300
+ """
301
+ )
302
+
303
+ with gr.Row():
304
+ gr.Markdown(
305
+ """
306
+ **Example Input:**
307
+ {Regular} Hello, I'd like to order a sandwich please.
308
+ {Surprised} What do you mean you're out of bread?
309
+ {Sad} I really wanted a sandwich though...
310
+ {Angry} You know what, darn you and your little shop!
311
+ {Whisper} I'll just go back home and cry now.
312
+ {Shouting} Why me?!
313
+ """
314
+ )
315
+
316
+ gr.Markdown(
317
+ """
318
+ **Example Input 2:**
319
+ {Speaker1_Happy} Hello, I'd like to order a sandwich please.
320
+ {Speaker2_Regular} Sorry, we're out of bread.
321
+ {Speaker1_Sad} I really wanted a sandwich though...
322
+ {Speaker2_Whisper} I'll give you the last one I was hiding.
323
+ """
324
+ )
325
+
326
+ gr.Markdown(
327
+ "Upload different audio clips for each speech type. The first speech type is mandatory. You can add additional speech types by clicking the 'Add Speech Type' button."
328
+ )
329
+
330
+ # Regular speech type (mandatory)
331
+ with gr.Row() as regular_row:
332
+ with gr.Column():
333
+ regular_name = gr.Textbox(value="Regular", label="Speech Type Name")
334
+ regular_insert = gr.Button("Insert Label", variant="secondary")
335
+ regular_audio = gr.Audio(label="Regular Reference Audio", type="filepath")
336
+ regular_ref_text = gr.Textbox(label="Reference Text (Regular)", lines=2)
337
+
338
+ # Regular speech type (max 100)
339
+ max_speech_types = 100
340
+ speech_type_rows = [regular_row]
341
+ speech_type_names = [regular_name]
342
+ speech_type_audios = [regular_audio]
343
+ speech_type_ref_texts = [regular_ref_text]
344
+ speech_type_delete_btns = [None]
345
+ speech_type_insert_btns = [regular_insert]
346
+
347
+ # Additional speech types (99 more)
348
+ for i in range(max_speech_types - 1):
349
+ with gr.Row(visible=False) as row:
350
+ with gr.Column():
351
+ name_input = gr.Textbox(label="Speech Type Name")
352
+ delete_btn = gr.Button("Delete Type", variant="secondary")
353
+ insert_btn = gr.Button("Insert Label", variant="secondary")
354
+ audio_input = gr.Audio(label="Reference Audio", type="filepath")
355
+ ref_text_input = gr.Textbox(label="Reference Text", lines=2)
356
+ speech_type_rows.append(row)
357
+ speech_type_names.append(name_input)
358
+ speech_type_audios.append(audio_input)
359
+ speech_type_ref_texts.append(ref_text_input)
360
+ speech_type_delete_btns.append(delete_btn)
361
+ speech_type_insert_btns.append(insert_btn)
362
+
363
+ # Button to add speech type
364
+ add_speech_type_btn = gr.Button("Add Speech Type")
365
+
366
+ # Keep track of autoincrement of speech types, no roll back
367
+ speech_type_count = 1
368
+
369
+ # Function to add a speech type
370
+ def add_speech_type_fn():
371
+ row_updates = [gr.update() for _ in range(max_speech_types)]
372
+ global speech_type_count
373
+ if speech_type_count < max_speech_types:
374
+ row_updates[speech_type_count] = gr.update(visible=True)
375
+ speech_type_count += 1
376
+ else:
377
+ gr.Warning("Exhausted maximum number of speech types. Consider restart the app.")
378
+ return row_updates
379
+
380
+ add_speech_type_btn.click(add_speech_type_fn, outputs=speech_type_rows)
381
+
382
+ # Function to delete a speech type
383
+ def delete_speech_type_fn():
384
+ return gr.update(visible=False), None, None, None
385
+
386
+ # Update delete button clicks
387
+ for i in range(1, len(speech_type_delete_btns)):
388
+ speech_type_delete_btns[i].click(
389
+ delete_speech_type_fn,
390
+ outputs=[speech_type_rows[i], speech_type_names[i], speech_type_audios[i], speech_type_ref_texts[i]],
391
+ )
392
+
393
+ # Text input for the prompt
394
+ gen_text_input_multistyle = gr.Textbox(
395
+ label="Text to Generate",
396
+ lines=10,
397
+ placeholder="Enter the script with speaker names (or emotion types) at the start of each block, e.g.:\n\n{Regular} Hello, I'd like to order a sandwich please.\n{Surprised} What do you mean you're out of bread?\n{Sad} I really wanted a sandwich though...\n{Angry} You know what, darn you and your little shop!\n{Whisper} I'll just go back home and cry now.\n{Shouting} Why me?!",
398
+ )
399
+
400
+ def make_insert_speech_type_fn(index):
401
+ def insert_speech_type_fn(current_text, speech_type_name):
402
+ current_text = current_text or ""
403
+ speech_type_name = speech_type_name or "None"
404
+ updated_text = current_text + f"{{{speech_type_name}}} "
405
+ return updated_text
406
+
407
+ return insert_speech_type_fn
408
+
409
+ for i, insert_btn in enumerate(speech_type_insert_btns):
410
+ insert_fn = make_insert_speech_type_fn(i)
411
+ insert_btn.click(
412
+ insert_fn,
413
+ inputs=[gen_text_input_multistyle, speech_type_names[i]],
414
+ outputs=gen_text_input_multistyle,
415
+ )
416
+
417
+ with gr.Accordion("Advanced Settings", open=False):
418
+ remove_silence_multistyle = gr.Checkbox(
419
+ label="Remove Silences",
420
+ value=True,
421
+ )
422
+
423
+ # Generate button
424
+ generate_multistyle_btn = gr.Button("Generate Multi-Style Speech", variant="primary")
425
+
426
+ # Output audio
427
+ audio_output_multistyle = gr.Audio(label="Synthesized Audio")
428
+
429
+ @gpu_decorator
430
+ def generate_multistyle_speech(
431
+ gen_text,
432
+ *args,
433
+ ):
434
+ speech_type_names_list = args[:max_speech_types]
435
+ speech_type_audios_list = args[max_speech_types : 2 * max_speech_types]
436
+ speech_type_ref_texts_list = args[2 * max_speech_types : 3 * max_speech_types]
437
+ remove_silence = args[3 * max_speech_types]
438
+ # Collect the speech types and their audios into a dict
439
+ speech_types = OrderedDict()
440
+
441
+ ref_text_idx = 0
442
+ for name_input, audio_input, ref_text_input in zip(
443
+ speech_type_names_list, speech_type_audios_list, speech_type_ref_texts_list
444
+ ):
445
+ if name_input and audio_input:
446
+ speech_types[name_input] = {"audio": audio_input, "ref_text": ref_text_input}
447
+ else:
448
+ speech_types[f"@{ref_text_idx}@"] = {"audio": "", "ref_text": ""}
449
+ ref_text_idx += 1
450
+
451
+ # Parse the gen_text into segments
452
+ segments = parse_speechtypes_text(gen_text)
453
+
454
+ # For each segment, generate speech
455
+ generated_audio_segments = []
456
+ current_style = "Regular"
457
+
458
+ for segment in segments:
459
+ style = segment["style"]
460
+ text = segment["text"]
461
+
462
+ if style in speech_types:
463
+ current_style = style
464
+ else:
465
+ gr.Warning(f"Type {style} is not available, will use Regular as default.")
466
+ current_style = "Regular"
467
+
468
+ try:
469
+ ref_audio = speech_types[current_style]["audio"]
470
+ except KeyError:
471
+ gr.Warning(f"Please provide reference audio for type {current_style}.")
472
+ return [None] + [speech_types[style]["ref_text"] for style in speech_types]
473
+ ref_text = speech_types[current_style].get("ref_text", "")
474
+
475
+ # Generate speech for this segment
476
+ audio_out, _, ref_text_out = infer(
477
+ ref_audio, ref_text, text, tts_model_choice, remove_silence, 0, show_info=print
478
+ ) # show_info=print no pull to top when generating
479
+ sr, audio_data = audio_out
480
+
481
+ generated_audio_segments.append(audio_data)
482
+ speech_types[current_style]["ref_text"] = ref_text_out
483
+
484
+ # Concatenate all audio segments
485
+ if generated_audio_segments:
486
+ final_audio_data = np.concatenate(generated_audio_segments)
487
+ return [(sr, final_audio_data)] + [speech_types[style]["ref_text"] for style in speech_types]
488
+ else:
489
+ gr.Warning("No audio generated.")
490
+ return [None] + [speech_types[style]["ref_text"] for style in speech_types]
491
+
492
+ generate_multistyle_btn.click(
493
+ generate_multistyle_speech,
494
+ inputs=[
495
+ gen_text_input_multistyle,
496
+ ]
497
+ + speech_type_names
498
+ + speech_type_audios
499
+ + speech_type_ref_texts
500
+ + [
501
+ remove_silence_multistyle,
502
+ ],
503
+ outputs=[audio_output_multistyle] + speech_type_ref_texts,
504
+ )
505
+
506
+ # Validation function to disable Generate button if speech types are missing
507
+ def validate_speech_types(gen_text, regular_name, *args):
508
+ speech_type_names_list = args
509
+
510
+ # Collect the speech types names
511
+ speech_types_available = set()
512
+ if regular_name:
513
+ speech_types_available.add(regular_name)
514
+ for name_input in speech_type_names_list:
515
+ if name_input:
516
+ speech_types_available.add(name_input)
517
+
518
+ # Parse the gen_text to get the speech types used
519
+ segments = parse_speechtypes_text(gen_text)
520
+ speech_types_in_text = set(segment["style"] for segment in segments)
521
+
522
+ # Check if all speech types in text are available
523
+ missing_speech_types = speech_types_in_text - speech_types_available
524
+
525
+ if missing_speech_types:
526
+ # Disable the generate button
527
+ return gr.update(interactive=False)
528
+ else:
529
+ # Enable the generate button
530
+ return gr.update(interactive=True)
531
+
532
+ gen_text_input_multistyle.change(
533
+ validate_speech_types,
534
+ inputs=[gen_text_input_multistyle, regular_name] + speech_type_names,
535
+ outputs=generate_multistyle_btn,
536
+ )
537
+
538
+
539
+ with gr.Blocks() as app_chat:
540
+ gr.Markdown(
541
+ """
542
+ # Voice Chat
543
+ Have a conversation with an AI using your reference voice!
544
+ 1. Upload a reference audio clip and optionally its transcript.
545
+ 2. Load the chat model.
546
+ 3. Record your message through your microphone.
547
+ 4. The AI will respond using the reference voice.
548
+ """
549
+ )
550
+
551
+ if not USING_SPACES:
552
+ load_chat_model_btn = gr.Button("Load Chat Model", variant="primary")
553
+
554
+ chat_interface_container = gr.Column(visible=False)
555
+
556
+ @gpu_decorator
557
+ def load_chat_model():
558
+ global chat_model_state, chat_tokenizer_state
559
+ if chat_model_state is None:
560
+ show_info = gr.Info
561
+ show_info("Loading chat model...")
562
+ model_name = "Qwen/Qwen2.5-3B-Instruct"
563
+ chat_model_state = AutoModelForCausalLM.from_pretrained(
564
+ model_name, torch_dtype="auto", device_map="auto"
565
+ )
566
+ chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
567
+ show_info("Chat model loaded.")
568
+
569
+ return gr.update(visible=False), gr.update(visible=True)
570
+
571
+ load_chat_model_btn.click(load_chat_model, outputs=[load_chat_model_btn, chat_interface_container])
572
+
573
+ else:
574
+ chat_interface_container = gr.Column()
575
+
576
+ if chat_model_state is None:
577
+ model_name = "Qwen/Qwen2.5-3B-Instruct"
578
+ chat_model_state = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
579
+ chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
580
+
581
+ with chat_interface_container:
582
+ with gr.Row():
583
+ with gr.Column():
584
+ ref_audio_chat = gr.Audio(label="Reference Audio", type="filepath")
585
+ with gr.Column():
586
+ with gr.Accordion("Advanced Settings", open=False):
587
+ remove_silence_chat = gr.Checkbox(
588
+ label="Remove Silences",
589
+ value=True,
590
+ )
591
+ ref_text_chat = gr.Textbox(
592
+ label="Reference Text",
593
+ info="Optional: Leave blank to auto-transcribe",
594
+ lines=2,
595
+ )
596
+ system_prompt_chat = gr.Textbox(
597
+ label="System Prompt",
598
+ value="You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
599
+ lines=2,
600
+ )
601
+
602
+ chatbot_interface = gr.Chatbot(label="Conversation")
603
+
604
+ with gr.Row():
605
+ with gr.Column():
606
+ audio_input_chat = gr.Microphone(
607
+ label="Speak your message",
608
+ type="filepath",
609
+ )
610
+ audio_output_chat = gr.Audio(autoplay=True)
611
+ with gr.Column():
612
+ text_input_chat = gr.Textbox(
613
+ label="Type your message",
614
+ lines=1,
615
+ )
616
+ send_btn_chat = gr.Button("Send Message")
617
+ clear_btn_chat = gr.Button("Clear Conversation")
618
+
619
+ conversation_state = gr.State(
620
+ value=[
621
+ {
622
+ "role": "system",
623
+ "content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
624
+ }
625
+ ]
626
+ )
627
+
628
+ # Modify process_audio_input to use model and tokenizer from state
629
+ @gpu_decorator
630
+ def process_audio_input(audio_path, text, history, conv_state):
631
+ """Handle audio or text input from user"""
632
+
633
+ if not audio_path and not text.strip():
634
+ return history, conv_state, ""
635
+
636
+ if audio_path:
637
+ text = preprocess_ref_audio_text(audio_path, text)[1]
638
+
639
+ if not text.strip():
640
+ return history, conv_state, ""
641
+
642
+ conv_state.append({"role": "user", "content": text})
643
+ history.append((text, None))
644
+
645
+ response = generate_response(conv_state, chat_model_state, chat_tokenizer_state)
646
+
647
+ conv_state.append({"role": "assistant", "content": response})
648
+ history[-1] = (text, response)
649
+
650
+ return history, conv_state, ""
651
+
652
+ @gpu_decorator
653
+ def generate_audio_response(history, ref_audio, ref_text, remove_silence):
654
+ """Generate TTS audio for AI response"""
655
+ if not history or not ref_audio:
656
+ return None
657
+
658
+ last_user_message, last_ai_response = history[-1]
659
+ if not last_ai_response:
660
+ return None
661
+
662
+ audio_result, _, ref_text_out = infer(
663
+ ref_audio,
664
+ ref_text,
665
+ last_ai_response,
666
+ tts_model_choice,
667
+ remove_silence,
668
+ cross_fade_duration=0.15,
669
+ speed=1.0,
670
+ show_info=print, # show_info=print no pull to top when generating
671
+ )
672
+ return audio_result, ref_text_out
673
+
674
+ def clear_conversation():
675
+ """Reset the conversation"""
676
+ return [], [
677
+ {
678
+ "role": "system",
679
+ "content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
680
+ }
681
+ ]
682
+
683
+ def update_system_prompt(new_prompt):
684
+ """Update the system prompt and reset the conversation"""
685
+ new_conv_state = [{"role": "system", "content": new_prompt}]
686
+ return [], new_conv_state
687
+
688
+ # Handle audio input
689
+ audio_input_chat.stop_recording(
690
+ process_audio_input,
691
+ inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
692
+ outputs=[chatbot_interface, conversation_state],
693
+ ).then(
694
+ generate_audio_response,
695
+ inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
696
+ outputs=[audio_output_chat, ref_text_chat],
697
+ ).then(
698
+ lambda: None,
699
+ None,
700
+ audio_input_chat,
701
+ )
702
+
703
+ # Handle text input
704
+ text_input_chat.submit(
705
+ process_audio_input,
706
+ inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
707
+ outputs=[chatbot_interface, conversation_state],
708
+ ).then(
709
+ generate_audio_response,
710
+ inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
711
+ outputs=[audio_output_chat, ref_text_chat],
712
+ ).then(
713
+ lambda: None,
714
+ None,
715
+ text_input_chat,
716
+ )
717
+
718
+ # Handle send button
719
+ send_btn_chat.click(
720
+ process_audio_input,
721
+ inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
722
+ outputs=[chatbot_interface, conversation_state],
723
+ ).then(
724
+ generate_audio_response,
725
+ inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
726
+ outputs=[audio_output_chat, ref_text_chat],
727
+ ).then(
728
+ lambda: None,
729
+ None,
730
+ text_input_chat,
731
+ )
732
+
733
+ # Handle clear button
734
+ clear_btn_chat.click(
735
+ clear_conversation,
736
+ outputs=[chatbot_interface, conversation_state],
737
+ )
738
+
739
+ # Handle system prompt change and reset conversation
740
+ system_prompt_chat.change(
741
+ update_system_prompt,
742
+ inputs=system_prompt_chat,
743
+ outputs=[chatbot_interface, conversation_state],
744
+ )
745
+
746
+
747
+ with gr.Blocks() as app:
748
+ gr.Markdown(
749
+ """
750
+ # E2/F5 TTS
751
+
752
+ This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models:
753
+
754
+ * [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)
755
+ * [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)
756
+
757
+ The checkpoints currently support English and Chinese.
758
+
759
+ If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s with ✂ in the bottom right corner (otherwise might have non-optimal auto-trimmed result).
760
+
761
+ **NOTE: Reference text will be automatically transcribed with Whisper if not provided. For best results, keep your reference clips short (<15s). Ensure the audio is fully uploaded before generating.**
762
+ """
763
+ )
764
+
765
+ last_used_custom = files("f5_tts").joinpath("infer/.cache/last_used_custom_model_info.txt")
766
+
767
+ def load_last_used_custom():
768
+ try:
769
+ custom = []
770
+ with open(last_used_custom, "r", encoding="utf-8") as f:
771
+ for line in f:
772
+ custom.append(line.strip())
773
+ return custom
774
+ except FileNotFoundError:
775
+ last_used_custom.parent.mkdir(parents=True, exist_ok=True)
776
+ return DEFAULT_TTS_MODEL_CFG
777
+
778
+ def switch_tts_model(new_choice):
779
+ global tts_model_choice
780
+ if new_choice == "Custom": # override in case webpage is refreshed
781
+ custom_ckpt_path, custom_vocab_path, custom_model_cfg = load_last_used_custom()
782
+ tts_model_choice = ["Custom", custom_ckpt_path, custom_vocab_path, json.loads(custom_model_cfg)]
783
+ return (
784
+ gr.update(visible=True, value=custom_ckpt_path),
785
+ gr.update(visible=True, value=custom_vocab_path),
786
+ gr.update(visible=True, value=custom_model_cfg),
787
+ )
788
+ else:
789
+ tts_model_choice = new_choice
790
+ return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
791
+
792
+ def set_custom_model(custom_ckpt_path, custom_vocab_path, custom_model_cfg):
793
+ global tts_model_choice
794
+ tts_model_choice = ["Custom", custom_ckpt_path, custom_vocab_path, json.loads(custom_model_cfg)]
795
+ with open(last_used_custom, "w", encoding="utf-8") as f:
796
+ f.write(custom_ckpt_path + "\n" + custom_vocab_path + "\n" + custom_model_cfg + "\n")
797
+
798
+ with gr.Row():
799
+ if not USING_SPACES:
800
+ choose_tts_model = gr.Radio(
801
+ choices=[DEFAULT_TTS_MODEL, "E2-TTS", "Custom"], label="Choose TTS Model", value=DEFAULT_TTS_MODEL
802
+ )
803
+ else:
804
+ choose_tts_model = gr.Radio(
805
+ choices=[DEFAULT_TTS_MODEL, "E2-TTS"], label="Choose TTS Model", value=DEFAULT_TTS_MODEL
806
+ )
807
+ custom_ckpt_path = gr.Dropdown(
808
+ choices=[DEFAULT_TTS_MODEL_CFG[0]],
809
+ value=load_last_used_custom()[0],
810
+ allow_custom_value=True,
811
+ label="Model: local_path | hf://user_id/repo_id/model_ckpt",
812
+ visible=False,
813
+ )
814
+ custom_vocab_path = gr.Dropdown(
815
+ choices=[DEFAULT_TTS_MODEL_CFG[1]],
816
+ value=load_last_used_custom()[1],
817
+ allow_custom_value=True,
818
+ label="Vocab: local_path | hf://user_id/repo_id/vocab_file",
819
+ visible=False,
820
+ )
821
+ custom_model_cfg = gr.Dropdown(
822
+ choices=[
823
+ DEFAULT_TTS_MODEL_CFG[2],
824
+ json.dumps(dict(dim=768, depth=18, heads=12, ff_mult=2, text_dim=512, conv_layers=4)),
825
+ ],
826
+ value=load_last_used_custom()[2],
827
+ allow_custom_value=True,
828
+ label="Config: in a dictionary form",
829
+ visible=False,
830
+ )
831
+
832
+ choose_tts_model.change(
833
+ switch_tts_model,
834
+ inputs=[choose_tts_model],
835
+ outputs=[custom_ckpt_path, custom_vocab_path, custom_model_cfg],
836
+ show_progress="hidden",
837
+ )
838
+ custom_ckpt_path.change(
839
+ set_custom_model,
840
+ inputs=[custom_ckpt_path, custom_vocab_path, custom_model_cfg],
841
+ show_progress="hidden",
842
+ )
843
+ custom_vocab_path.change(
844
+ set_custom_model,
845
+ inputs=[custom_ckpt_path, custom_vocab_path, custom_model_cfg],
846
+ show_progress="hidden",
847
+ )
848
+ custom_model_cfg.change(
849
+ set_custom_model,
850
+ inputs=[custom_ckpt_path, custom_vocab_path, custom_model_cfg],
851
+ show_progress="hidden",
852
+ )
853
+
854
+ gr.TabbedInterface(
855
+ [app_tts, app_multistyle, app_chat, app_credits],
856
+ ["Basic-TTS", "Multi-Speech", "Voice-Chat", "Credits"],
857
+ )
858
+
859
+
860
+ @click.command()
861
+ @click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
862
+ @click.option("--host", "-H", default=None, help="Host to run the app on")
863
+ @click.option(
864
+ "--share",
865
+ "-s",
866
+ default=False,
867
+ is_flag=True,
868
+ help="Share the app via Gradio share link",
869
+ )
870
+ @click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
871
+ @click.option(
872
+ "--root_path",
873
+ "-r",
874
+ default=None,
875
+ type=str,
876
+ help='The root path (or "mount point") of the application, if it\'s not served from the root ("/") of the domain. Often used when the application is behind a reverse proxy that forwards requests to the application, e.g. set "/myapp" or full URL for application served at "https://example.com/myapp".',
877
+ )
878
+ def main(port, host, share, api, root_path):
879
+ global app
880
+ print("Starting app...")
881
+ app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api, root_path=root_path)
882
+
883
+
884
+ if __name__ == "__main__":
885
+ if not USING_SPACES:
886
+ main()
887
+ else:
888
+ app.queue().launch()
F5-TTS/src/f5_tts/infer/speech_edit.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ os.environ["PYTOCH_ENABLE_MPS_FALLBACK"] = "1" # for MPS device compatibility
4
+
5
+ import torch
6
+ import torch.nn.functional as F
7
+ import torchaudio
8
+
9
+ from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder, save_spectrogram
10
+ from f5_tts.model import CFM, DiT, UNetT
11
+ from f5_tts.model.utils import convert_char_to_pinyin, get_tokenizer
12
+
13
+ device = (
14
+ "cuda"
15
+ if torch.cuda.is_available()
16
+ else "xpu"
17
+ if torch.xpu.is_available()
18
+ else "mps"
19
+ if torch.backends.mps.is_available()
20
+ else "cpu"
21
+ )
22
+
23
+
24
+ # --------------------- Dataset Settings -------------------- #
25
+
26
+ target_sample_rate = 24000
27
+ n_mel_channels = 100
28
+ hop_length = 256
29
+ win_length = 1024
30
+ n_fft = 1024
31
+ mel_spec_type = "vocos" # 'vocos' or 'bigvgan'
32
+ target_rms = 0.1
33
+
34
+ tokenizer = "pinyin"
35
+ dataset_name = "Emilia_ZH_EN"
36
+
37
+
38
+ # ---------------------- infer setting ---------------------- #
39
+
40
+ seed = None # int | None
41
+
42
+ exp_name = "F5TTS_Base" # F5TTS_Base | E2TTS_Base
43
+ ckpt_step = 1200000
44
+
45
+ nfe_step = 32 # 16, 32
46
+ cfg_strength = 2.0
47
+ ode_method = "euler" # euler | midpoint
48
+ sway_sampling_coef = -1.0
49
+ speed = 1.0
50
+
51
+ if exp_name == "F5TTS_Base":
52
+ model_cls = DiT
53
+ model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
54
+
55
+ elif exp_name == "E2TTS_Base":
56
+ model_cls = UNetT
57
+ model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
58
+
59
+ ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.safetensors"
60
+ output_dir = "tests"
61
+
62
+ # [leverage https://github.com/MahmoudAshraf97/ctc-forced-aligner to get char level alignment]
63
+ # pip install git+https://github.com/MahmoudAshraf97/ctc-forced-aligner.git
64
+ # [write the origin_text into a file, e.g. tests/test_edit.txt]
65
+ # ctc-forced-aligner --audio_path "src/f5_tts/infer/examples/basic/basic_ref_en.wav" --text_path "tests/test_edit.txt" --language "zho" --romanize --split_size "char"
66
+ # [result will be saved at same path of audio file]
67
+ # [--language "zho" for Chinese, "eng" for English]
68
+ # [if local ckpt, set --alignment_model "../checkpoints/mms-300m-1130-forced-aligner"]
69
+
70
+ audio_to_edit = "src/f5_tts/infer/examples/basic/basic_ref_en.wav"
71
+ origin_text = "Some call me nature, others call me mother nature."
72
+ target_text = "Some call me optimist, others call me realist."
73
+ parts_to_edit = [
74
+ [1.42, 2.44],
75
+ [4.04, 4.9],
76
+ ] # stard_ends of "nature" & "mother nature", in seconds
77
+ fix_duration = [
78
+ 1.2,
79
+ 1,
80
+ ] # fix duration for "optimist" & "realist", in seconds
81
+
82
+ # audio_to_edit = "src/f5_tts/infer/examples/basic/basic_ref_zh.wav"
83
+ # origin_text = "对,这就是我,万人敬仰的太乙真人。"
84
+ # target_text = "对,那就是你,万人敬仰的太白金星。"
85
+ # parts_to_edit = [[0.84, 1.4], [1.92, 2.4], [4.26, 6.26], ]
86
+ # fix_duration = None # use origin text duration
87
+
88
+
89
+ # -------------------------------------------------#
90
+
91
+ use_ema = True
92
+
93
+ if not os.path.exists(output_dir):
94
+ os.makedirs(output_dir)
95
+
96
+ # Vocoder model
97
+ local = False
98
+ if mel_spec_type == "vocos":
99
+ vocoder_local_path = "../checkpoints/charactr/vocos-mel-24khz"
100
+ elif mel_spec_type == "bigvgan":
101
+ vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
102
+ vocoder = load_vocoder(vocoder_name=mel_spec_type, is_local=local, local_path=vocoder_local_path)
103
+
104
+ # Tokenizer
105
+ vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
106
+
107
+ # Model
108
+ model = CFM(
109
+ transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
110
+ mel_spec_kwargs=dict(
111
+ n_fft=n_fft,
112
+ hop_length=hop_length,
113
+ win_length=win_length,
114
+ n_mel_channels=n_mel_channels,
115
+ target_sample_rate=target_sample_rate,
116
+ mel_spec_type=mel_spec_type,
117
+ ),
118
+ odeint_kwargs=dict(
119
+ method=ode_method,
120
+ ),
121
+ vocab_char_map=vocab_char_map,
122
+ ).to(device)
123
+
124
+ dtype = torch.float32 if mel_spec_type == "bigvgan" else None
125
+ model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema)
126
+
127
+ # Audio
128
+ audio, sr = torchaudio.load(audio_to_edit)
129
+ if audio.shape[0] > 1:
130
+ audio = torch.mean(audio, dim=0, keepdim=True)
131
+ rms = torch.sqrt(torch.mean(torch.square(audio)))
132
+ if rms < target_rms:
133
+ audio = audio * target_rms / rms
134
+ if sr != target_sample_rate:
135
+ resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
136
+ audio = resampler(audio)
137
+ offset = 0
138
+ audio_ = torch.zeros(1, 0)
139
+ edit_mask = torch.zeros(1, 0, dtype=torch.bool)
140
+ for part in parts_to_edit:
141
+ start, end = part
142
+ part_dur = end - start if fix_duration is None else fix_duration.pop(0)
143
+ part_dur = part_dur * target_sample_rate
144
+ start = start * target_sample_rate
145
+ audio_ = torch.cat((audio_, audio[:, round(offset) : round(start)], torch.zeros(1, round(part_dur))), dim=-1)
146
+ edit_mask = torch.cat(
147
+ (
148
+ edit_mask,
149
+ torch.ones(1, round((start - offset) / hop_length), dtype=torch.bool),
150
+ torch.zeros(1, round(part_dur / hop_length), dtype=torch.bool),
151
+ ),
152
+ dim=-1,
153
+ )
154
+ offset = end * target_sample_rate
155
+ # audio = torch.cat((audio_, audio[:, round(offset):]), dim = -1)
156
+ edit_mask = F.pad(edit_mask, (0, audio.shape[-1] // hop_length - edit_mask.shape[-1] + 1), value=True)
157
+ audio = audio.to(device)
158
+ edit_mask = edit_mask.to(device)
159
+
160
+ # Text
161
+ text_list = [target_text]
162
+ if tokenizer == "pinyin":
163
+ final_text_list = convert_char_to_pinyin(text_list)
164
+ else:
165
+ final_text_list = [text_list]
166
+ print(f"text : {text_list}")
167
+ print(f"pinyin: {final_text_list}")
168
+
169
+ # Duration
170
+ ref_audio_len = 0
171
+ duration = audio.shape[-1] // hop_length
172
+
173
+ # Inference
174
+ with torch.inference_mode():
175
+ generated, trajectory = model.sample(
176
+ cond=audio,
177
+ text=final_text_list,
178
+ duration=duration,
179
+ steps=nfe_step,
180
+ cfg_strength=cfg_strength,
181
+ sway_sampling_coef=sway_sampling_coef,
182
+ seed=seed,
183
+ edit_mask=edit_mask,
184
+ )
185
+ print(f"Generated mel: {generated.shape}")
186
+
187
+ # Final result
188
+ generated = generated.to(torch.float32)
189
+ generated = generated[:, ref_audio_len:, :]
190
+ gen_mel_spec = generated.permute(0, 2, 1)
191
+ if mel_spec_type == "vocos":
192
+ generated_wave = vocoder.decode(gen_mel_spec).cpu()
193
+ elif mel_spec_type == "bigvgan":
194
+ generated_wave = vocoder(gen_mel_spec).squeeze(0).cpu()
195
+
196
+ if rms < target_rms:
197
+ generated_wave = generated_wave * rms / target_rms
198
+
199
+ save_spectrogram(gen_mel_spec[0].cpu().numpy(), f"{output_dir}/speech_edit_out.png")
200
+ torchaudio.save(f"{output_dir}/speech_edit_out.wav", generated_wave, target_sample_rate)
201
+ print(f"Generated wav: {generated_wave.shape}")
F5-TTS/src/f5_tts/infer/utils_infer.py ADDED
@@ -0,0 +1,572 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A unified script for inference process
2
+ # Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format
3
+ import os
4
+ import sys
5
+
6
+ os.environ["PYTOCH_ENABLE_MPS_FALLBACK"] = "1" # for MPS device compatibility
7
+ sys.path.append(f"{os.path.dirname(os.path.abspath(__file__))}/../../third_party/BigVGAN/")
8
+
9
+ import hashlib
10
+ import re
11
+ import tempfile
12
+ from importlib.resources import files
13
+
14
+ import matplotlib
15
+
16
+ matplotlib.use("Agg")
17
+
18
+ import matplotlib.pylab as plt
19
+ import numpy as np
20
+ import torch
21
+ import torchaudio
22
+ import tqdm
23
+ from huggingface_hub import snapshot_download, hf_hub_download
24
+ from pydub import AudioSegment, silence
25
+ from transformers import pipeline
26
+ from vocos import Vocos
27
+
28
+ from f5_tts.model import CFM
29
+ from f5_tts.model.utils import (
30
+ get_tokenizer,
31
+ convert_char_to_pinyin,
32
+ )
33
+
34
+ _ref_audio_cache = {}
35
+
36
+ device = (
37
+ "cuda"
38
+ if torch.cuda.is_available()
39
+ else "xpu"
40
+ if torch.xpu.is_available()
41
+ else "mps"
42
+ if torch.backends.mps.is_available()
43
+ else "cpu"
44
+ )
45
+
46
+ # -----------------------------------------
47
+
48
+ target_sample_rate = 24000
49
+ n_mel_channels = 100
50
+ hop_length = 256
51
+ win_length = 1024
52
+ n_fft = 1024
53
+ mel_spec_type = "vocos"
54
+ target_rms = 0.1
55
+ cross_fade_duration = 0.15
56
+ ode_method = "euler"
57
+ nfe_step = 32 # 16, 32
58
+ cfg_strength = 2.0
59
+ sway_sampling_coef = -1.0
60
+ speed = 1.0
61
+ fix_duration = None
62
+
63
+ # -----------------------------------------
64
+
65
+
66
+ # chunk text into smaller pieces
67
+
68
+
69
+ def chunk_text(text, max_chars=135):
70
+ """
71
+ Splits the input text into chunks, each with a maximum number of characters.
72
+
73
+ Args:
74
+ text (str): The text to be split.
75
+ max_chars (int): The maximum number of characters per chunk.
76
+
77
+ Returns:
78
+ List[str]: A list of text chunks.
79
+ """
80
+ chunks = []
81
+ current_chunk = ""
82
+ # Split the text into sentences based on punctuation followed by whitespace
83
+ sentences = re.split(r"(?<=[;:,.!?])\s+|(?<=[;:,。!?])", text)
84
+
85
+ for sentence in sentences:
86
+ if len(current_chunk.encode("utf-8")) + len(sentence.encode("utf-8")) <= max_chars:
87
+ current_chunk += sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence
88
+ else:
89
+ if current_chunk:
90
+ chunks.append(current_chunk.strip())
91
+ current_chunk = sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence
92
+
93
+ if current_chunk:
94
+ chunks.append(current_chunk.strip())
95
+
96
+ return chunks
97
+
98
+
99
+ # load vocoder
100
+ def load_vocoder(vocoder_name="vocos", is_local=False, local_path="", device=device, hf_cache_dir=None):
101
+ if vocoder_name == "vocos":
102
+ # vocoder = Vocos.from_pretrained("charactr/vocos-mel-24khz").to(device)
103
+ if is_local:
104
+ print(f"Load vocos from local path {local_path}")
105
+ config_path = f"{local_path}/config.yaml"
106
+ model_path = f"{local_path}/pytorch_model.bin"
107
+ else:
108
+ print("Download Vocos from huggingface charactr/vocos-mel-24khz")
109
+ repo_id = "charactr/vocos-mel-24khz"
110
+ config_path = hf_hub_download(repo_id=repo_id, cache_dir=hf_cache_dir, filename="config.yaml")
111
+ model_path = hf_hub_download(repo_id=repo_id, cache_dir=hf_cache_dir, filename="pytorch_model.bin")
112
+ vocoder = Vocos.from_hparams(config_path)
113
+ state_dict = torch.load(model_path, map_location="cpu", weights_only=True)
114
+ from vocos.feature_extractors import EncodecFeatures
115
+
116
+ if isinstance(vocoder.feature_extractor, EncodecFeatures):
117
+ encodec_parameters = {
118
+ "feature_extractor.encodec." + key: value
119
+ for key, value in vocoder.feature_extractor.encodec.state_dict().items()
120
+ }
121
+ state_dict.update(encodec_parameters)
122
+ vocoder.load_state_dict(state_dict)
123
+ vocoder = vocoder.eval().to(device)
124
+ elif vocoder_name == "bigvgan":
125
+ try:
126
+ from third_party.BigVGAN import bigvgan
127
+ except ImportError:
128
+ print("You need to follow the README to init submodule and change the BigVGAN source code.")
129
+ if is_local:
130
+ """download from https://huggingface.co/nvidia/bigvgan_v2_24khz_100band_256x/tree/main"""
131
+ vocoder = bigvgan.BigVGAN.from_pretrained(local_path, use_cuda_kernel=False)
132
+ else:
133
+ local_path = snapshot_download(repo_id="nvidia/bigvgan_v2_24khz_100band_256x", cache_dir=hf_cache_dir)
134
+ vocoder = bigvgan.BigVGAN.from_pretrained(local_path, use_cuda_kernel=False)
135
+
136
+ vocoder.remove_weight_norm()
137
+ vocoder = vocoder.eval().to(device)
138
+ return vocoder
139
+
140
+
141
+ # load asr pipeline
142
+
143
+ asr_pipe = None
144
+
145
+
146
+ def initialize_asr_pipeline(device: str = device, dtype=None):
147
+ if dtype is None:
148
+ dtype = (
149
+ torch.float16
150
+ if "cuda" in device
151
+ and torch.cuda.get_device_properties(device).major >= 6
152
+ and not torch.cuda.get_device_name().endswith("[ZLUDA]")
153
+ else torch.float32
154
+ )
155
+ global asr_pipe
156
+ asr_pipe = pipeline(
157
+ "automatic-speech-recognition",
158
+ model="openai/whisper-large-v3-turbo",
159
+ torch_dtype=dtype,
160
+ device=device,
161
+ )
162
+
163
+
164
+ # transcribe
165
+
166
+
167
+ def transcribe(ref_audio, language=None):
168
+ global asr_pipe
169
+ if asr_pipe is None:
170
+ initialize_asr_pipeline(device=device)
171
+ return asr_pipe(
172
+ ref_audio,
173
+ chunk_length_s=30,
174
+ batch_size=128,
175
+ generate_kwargs={"task": "transcribe", "language": language} if language else {"task": "transcribe"},
176
+ return_timestamps=False,
177
+ )["text"].strip()
178
+
179
+
180
+ # load model checkpoint for inference
181
+
182
+
183
+ def load_checkpoint(model, ckpt_path, device: str, dtype=None, use_ema=True):
184
+ if dtype is None:
185
+ dtype = (
186
+ torch.float16
187
+ if "cuda" in device
188
+ and torch.cuda.get_device_properties(device).major >= 6
189
+ and not torch.cuda.get_device_name().endswith("[ZLUDA]")
190
+ else torch.float32
191
+ )
192
+ model = model.to(dtype)
193
+
194
+ ckpt_type = ckpt_path.split(".")[-1]
195
+ if ckpt_type == "safetensors":
196
+ from safetensors.torch import load_file
197
+
198
+ checkpoint = load_file(ckpt_path, device=device)
199
+ else:
200
+ checkpoint = torch.load(ckpt_path, map_location=device, weights_only=True)
201
+
202
+ if use_ema:
203
+ if ckpt_type == "safetensors":
204
+ checkpoint = {"ema_model_state_dict": checkpoint}
205
+ checkpoint["model_state_dict"] = {
206
+ k.replace("ema_model.", ""): v
207
+ for k, v in checkpoint["ema_model_state_dict"].items()
208
+ if k not in ["initted", "step"]
209
+ }
210
+
211
+ # patch for backward compatibility, 305e3ea
212
+ for key in ["mel_spec.mel_stft.mel_scale.fb", "mel_spec.mel_stft.spectrogram.window"]:
213
+ if key in checkpoint["model_state_dict"]:
214
+ del checkpoint["model_state_dict"][key]
215
+
216
+ model.load_state_dict(checkpoint["model_state_dict"], strict=False)
217
+ else:
218
+ if ckpt_type == "safetensors":
219
+ checkpoint = {"model_state_dict": checkpoint}
220
+ model.load_state_dict(checkpoint["model_state_dict"])
221
+
222
+ del checkpoint
223
+ torch.cuda.empty_cache()
224
+
225
+ return model.to(device)
226
+
227
+
228
+ # load model for inference
229
+
230
+
231
+ def load_model(
232
+ model_cls,
233
+ model_cfg,
234
+ ckpt_path,
235
+ mel_spec_type=mel_spec_type,
236
+ vocab_file="",
237
+ ode_method=ode_method,
238
+ use_ema=True,
239
+ device=device,
240
+ ):
241
+ if vocab_file == "":
242
+ vocab_file = str(files("f5_tts").joinpath("infer/examples/vocab.txt"))
243
+ tokenizer = "custom"
244
+
245
+ print("\nvocab : ", vocab_file)
246
+ print("token : ", tokenizer)
247
+ print("model : ", ckpt_path, "\n")
248
+
249
+ vocab_char_map, vocab_size = get_tokenizer(vocab_file, tokenizer)
250
+ model = CFM(
251
+ transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
252
+ mel_spec_kwargs=dict(
253
+ n_fft=n_fft,
254
+ hop_length=hop_length,
255
+ win_length=win_length,
256
+ n_mel_channels=n_mel_channels,
257
+ target_sample_rate=target_sample_rate,
258
+ mel_spec_type=mel_spec_type,
259
+ ),
260
+ odeint_kwargs=dict(
261
+ method=ode_method,
262
+ ),
263
+ vocab_char_map=vocab_char_map,
264
+ ).to(device)
265
+
266
+ dtype = torch.float32 if mel_spec_type == "bigvgan" else None
267
+ model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema)
268
+
269
+ return model
270
+
271
+
272
+ def remove_silence_edges(audio, silence_threshold=-42):
273
+ # Remove silence from the start
274
+ non_silent_start_idx = silence.detect_leading_silence(audio, silence_threshold=silence_threshold)
275
+ audio = audio[non_silent_start_idx:]
276
+
277
+ # Remove silence from the end
278
+ non_silent_end_duration = audio.duration_seconds
279
+ for ms in reversed(audio):
280
+ if ms.dBFS > silence_threshold:
281
+ break
282
+ non_silent_end_duration -= 0.001
283
+ trimmed_audio = audio[: int(non_silent_end_duration * 1000)]
284
+
285
+ return trimmed_audio
286
+
287
+
288
+ # preprocess reference audio and text
289
+
290
+
291
+ def preprocess_ref_audio_text(ref_audio_orig, ref_text, clip_short=True, show_info=print, device=device):
292
+ show_info("Converting audio...")
293
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
294
+ aseg = AudioSegment.from_file(ref_audio_orig)
295
+
296
+ if clip_short:
297
+ # 1. try to find long silence for clipping
298
+ non_silent_segs = silence.split_on_silence(
299
+ aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000, seek_step=10
300
+ )
301
+ non_silent_wave = AudioSegment.silent(duration=0)
302
+ for non_silent_seg in non_silent_segs:
303
+ if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 15000:
304
+ show_info("Audio is over 15s, clipping short. (1)")
305
+ break
306
+ non_silent_wave += non_silent_seg
307
+
308
+ # 2. try to find short silence for clipping if 1. failed
309
+ if len(non_silent_wave) > 15000:
310
+ non_silent_segs = silence.split_on_silence(
311
+ aseg, min_silence_len=100, silence_thresh=-40, keep_silence=1000, seek_step=10
312
+ )
313
+ non_silent_wave = AudioSegment.silent(duration=0)
314
+ for non_silent_seg in non_silent_segs:
315
+ if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 15000:
316
+ show_info("Audio is over 15s, clipping short. (2)")
317
+ break
318
+ non_silent_wave += non_silent_seg
319
+
320
+ aseg = non_silent_wave
321
+
322
+ # 3. if no proper silence found for clipping
323
+ if len(aseg) > 15000:
324
+ aseg = aseg[:15000]
325
+ show_info("Audio is over 15s, clipping short. (3)")
326
+
327
+ aseg = remove_silence_edges(aseg) + AudioSegment.silent(duration=50)
328
+ aseg.export(f.name, format="wav")
329
+ ref_audio = f.name
330
+
331
+ # Compute a hash of the reference audio file
332
+ with open(ref_audio, "rb") as audio_file:
333
+ audio_data = audio_file.read()
334
+ audio_hash = hashlib.md5(audio_data).hexdigest()
335
+
336
+ if not ref_text.strip():
337
+ global _ref_audio_cache
338
+ if audio_hash in _ref_audio_cache:
339
+ # Use cached asr transcription
340
+ show_info("Using cached reference text...")
341
+ ref_text = _ref_audio_cache[audio_hash]
342
+ else:
343
+ show_info("No reference text provided, transcribing reference audio...")
344
+ ref_text = transcribe(ref_audio)
345
+ # Cache the transcribed text (not caching custom ref_text, enabling users to do manual tweak)
346
+ _ref_audio_cache[audio_hash] = ref_text
347
+ else:
348
+ show_info("Using custom reference text...")
349
+
350
+ # Ensure ref_text ends with a proper sentence-ending punctuation
351
+ if not ref_text.endswith(". ") and not ref_text.endswith("。"):
352
+ if ref_text.endswith("."):
353
+ ref_text += " "
354
+ else:
355
+ ref_text += ". "
356
+
357
+ print("\nref_text ", ref_text)
358
+
359
+ return ref_audio, ref_text
360
+
361
+
362
+ # infer process: chunk text -> infer batches [i.e. infer_batch_process()]
363
+
364
+
365
+ def infer_process(
366
+ ref_audio,
367
+ ref_text,
368
+ gen_text,
369
+ model_obj,
370
+ vocoder,
371
+ mel_spec_type=mel_spec_type,
372
+ show_info=print,
373
+ progress=tqdm,
374
+ target_rms=target_rms,
375
+ cross_fade_duration=cross_fade_duration,
376
+ nfe_step=nfe_step,
377
+ cfg_strength=cfg_strength,
378
+ sway_sampling_coef=sway_sampling_coef,
379
+ speed=speed,
380
+ fix_duration=fix_duration,
381
+ device=device,
382
+ energy=None,
383
+ ):
384
+ # Split the input text into batches
385
+ audio, sr = torchaudio.load(ref_audio)
386
+ max_chars = int(len(ref_text.encode("utf-8")) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr))
387
+ gen_text_batches = chunk_text(gen_text, max_chars=max_chars)
388
+ for i, gen_text in enumerate(gen_text_batches):
389
+ print(f"gen_text {i}", gen_text)
390
+ print("\n")
391
+
392
+ show_info(f"Generating audio in {len(gen_text_batches)} batches...")
393
+ return infer_batch_process(
394
+ (audio, sr),
395
+ ref_text,
396
+ gen_text_batches,
397
+ model_obj,
398
+ vocoder,
399
+ mel_spec_type=mel_spec_type,
400
+ progress=progress,
401
+ target_rms=target_rms,
402
+ cross_fade_duration=cross_fade_duration,
403
+ nfe_step=nfe_step,
404
+ cfg_strength=cfg_strength,
405
+ sway_sampling_coef=sway_sampling_coef,
406
+ speed=speed,
407
+ fix_duration=fix_duration,
408
+ device=device,
409
+ energy=energy,
410
+ )
411
+
412
+
413
+ # infer batches
414
+
415
+
416
+ def infer_batch_process(
417
+ ref_audio,
418
+ ref_text,
419
+ gen_text_batches,
420
+ model_obj,
421
+ vocoder,
422
+ mel_spec_type="vocos",
423
+ progress=tqdm,
424
+ target_rms=0.1,
425
+ cross_fade_duration=0.15,
426
+ nfe_step=32,
427
+ cfg_strength=2.0,
428
+ sway_sampling_coef=-1,
429
+ speed=1,
430
+ fix_duration=None,
431
+ device=None,
432
+ energy=None,
433
+ ):
434
+ audio, sr = ref_audio
435
+ if audio.shape[0] > 1:
436
+ audio = torch.mean(audio, dim=0, keepdim=True)
437
+
438
+ rms = torch.sqrt(torch.mean(torch.square(audio)))
439
+ if rms < target_rms:
440
+ audio = audio * target_rms / rms
441
+ if sr != target_sample_rate:
442
+ resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
443
+ audio = resampler(audio)
444
+ audio = audio.to(device)
445
+
446
+ generated_waves = []
447
+ spectrograms = []
448
+
449
+ if len(ref_text[-1].encode("utf-8")) == 1:
450
+ ref_text = ref_text + " "
451
+ for i, gen_text in enumerate(progress.tqdm(gen_text_batches)):
452
+ # Prepare the text
453
+ text_list = [ref_text + gen_text]
454
+ final_text_list = convert_char_to_pinyin(text_list)
455
+
456
+ ref_audio_len = audio.shape[-1] // hop_length
457
+ if fix_duration is not None:
458
+ duration = int(fix_duration * target_sample_rate / hop_length)
459
+ else:
460
+ # Calculate duration
461
+ ref_text_len = len(ref_text.encode("utf-8"))
462
+ gen_text_len = len(gen_text.encode("utf-8"))
463
+ duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
464
+ #print(ref_audio_len, int(ref_audio_len / ref_text_len * gen_text_len / speed), duration, energy[0].shape, energy[1].shape)
465
+ if energy is not None:
466
+ if energy[0] is None:
467
+ energy[0] = torch.zeros(1,ref_audio_len,1)
468
+ else:
469
+ if ref_audio_len > energy[0].shape[1]:
470
+ energy[0] = torch.cat([energy[0], torch.zeros(1,ref_audio_len-energy[0].shape[1],1)], dim=1)
471
+ else:
472
+ energy[0] = energy[0][:,:ref_audio_len,:]
473
+ duration = ref_audio_len + energy[1].shape[1]
474
+ energy = torch.cat(energy, dim=1).half().to(device)
475
+ else:
476
+ energy = torch.zeros(1,duration,1).half().to(device)
477
+
478
+ # inference
479
+ with torch.inference_mode():
480
+ generated, _ = model_obj.sample(
481
+ cond=audio,
482
+ text=final_text_list,
483
+ duration=duration,
484
+ steps=nfe_step,
485
+ cfg_strength=cfg_strength,
486
+ sway_sampling_coef=sway_sampling_coef,
487
+ energy=energy,
488
+ )
489
+
490
+ generated = generated.to(torch.float32)
491
+ generated = generated[:, ref_audio_len:, :]
492
+ generated_mel_spec = generated.permute(0, 2, 1)
493
+ if mel_spec_type == "vocos":
494
+ generated_wave = vocoder.decode(generated_mel_spec)
495
+ elif mel_spec_type == "bigvgan":
496
+ generated_wave = vocoder(generated_mel_spec)
497
+ if rms < target_rms:
498
+ generated_wave = generated_wave * rms / target_rms
499
+
500
+ # wav -> numpy
501
+ generated_wave = generated_wave.squeeze().cpu().numpy()
502
+
503
+ generated_waves.append(generated_wave)
504
+ spectrograms.append(generated_mel_spec[0].cpu().numpy())
505
+
506
+ # Combine all generated waves with cross-fading
507
+ if cross_fade_duration <= 0:
508
+ # Simply concatenate
509
+ final_wave = np.concatenate(generated_waves)
510
+ else:
511
+ final_wave = generated_waves[0]
512
+ for i in range(1, len(generated_waves)):
513
+ prev_wave = final_wave
514
+ next_wave = generated_waves[i]
515
+
516
+ # Calculate cross-fade samples, ensuring it does not exceed wave lengths
517
+ cross_fade_samples = int(cross_fade_duration * target_sample_rate)
518
+ cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave))
519
+
520
+ if cross_fade_samples <= 0:
521
+ # No overlap possible, concatenate
522
+ final_wave = np.concatenate([prev_wave, next_wave])
523
+ continue
524
+
525
+ # Overlapping parts
526
+ prev_overlap = prev_wave[-cross_fade_samples:]
527
+ next_overlap = next_wave[:cross_fade_samples]
528
+
529
+ # Fade out and fade in
530
+ fade_out = np.linspace(1, 0, cross_fade_samples)
531
+ fade_in = np.linspace(0, 1, cross_fade_samples)
532
+
533
+ # Cross-faded overlap
534
+ cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in
535
+
536
+ # Combine
537
+ new_wave = np.concatenate(
538
+ [prev_wave[:-cross_fade_samples], cross_faded_overlap, next_wave[cross_fade_samples:]]
539
+ )
540
+
541
+ final_wave = new_wave
542
+
543
+ # Create a combined spectrogram
544
+ combined_spectrogram = np.concatenate(spectrograms, axis=1)
545
+
546
+ return final_wave, target_sample_rate, combined_spectrogram
547
+
548
+
549
+ # remove silence from generated wav
550
+
551
+
552
+ def remove_silence_for_generated_wav(filename):
553
+ aseg = AudioSegment.from_file(filename)
554
+ non_silent_segs = silence.split_on_silence(
555
+ aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500, seek_step=10
556
+ )
557
+ non_silent_wave = AudioSegment.silent(duration=0)
558
+ for non_silent_seg in non_silent_segs:
559
+ non_silent_wave += non_silent_seg
560
+ aseg = non_silent_wave
561
+ aseg.export(filename, format="wav")
562
+
563
+
564
+ # save spectrogram
565
+
566
+
567
+ def save_spectrogram(spectrogram, path):
568
+ plt.figure(figsize=(12, 4))
569
+ plt.imshow(spectrogram, origin="lower", aspect="auto")
570
+ plt.colorbar()
571
+ plt.savefig(path)
572
+ plt.close()
F5-TTS/src/f5_tts/model/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ from f5_tts.model.cfm import CFM
2
+
3
+ from f5_tts.model.backbones.unett import UNetT
4
+ from f5_tts.model.backbones.dit import DiT
5
+ from f5_tts.model.backbones.mmdit import MMDiT
6
+
7
+ from f5_tts.model.trainer import Trainer
8
+
9
+
10
+ __all__ = ["CFM", "UNetT", "DiT", "MMDiT", "Trainer"]
F5-TTS/src/f5_tts/model/backbones/README.md ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Backbones quick introduction
2
+
3
+
4
+ ### unett.py
5
+ - flat unet transformer
6
+ - structure same as in e2-tts & voicebox paper except using rotary pos emb
7
+ - update: allow possible abs pos emb & convnextv2 blocks for embedded text before concat
8
+
9
+ ### dit.py
10
+ - adaln-zero dit
11
+ - embedded timestep as condition
12
+ - concatted noised_input + masked_cond + embedded_text, linear proj in
13
+ - possible abs pos emb & convnextv2 blocks for embedded text before concat
14
+ - possible long skip connection (first layer to last layer)
15
+
16
+ ### mmdit.py
17
+ - sd3 structure
18
+ - timestep as condition
19
+ - left stream: text embedded and applied a abs pos emb
20
+ - right stream: masked_cond & noised_input concatted and with same conv pos emb as unett
F5-TTS/src/f5_tts/model/backbones/dit.py ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ ein notation:
3
+ b - batch
4
+ n - sequence
5
+ nt - text sequence
6
+ nw - raw wave length
7
+ d - dimension
8
+ """
9
+
10
+ from __future__ import annotations
11
+
12
+ import torch
13
+ from torch import nn
14
+ import torch.nn.functional as F
15
+
16
+ from x_transformers.x_transformers import RotaryEmbedding
17
+
18
+ from f5_tts.model.modules import (
19
+ TimestepEmbedding,
20
+ ConvNeXtV2Block,
21
+ ConvPositionEmbedding,
22
+ DiTBlock,
23
+ AdaLayerNormZero_Final,
24
+ precompute_freqs_cis,
25
+ get_pos_embed_indices,
26
+ )
27
+
28
+
29
+ # Text embedding
30
+
31
+
32
+ class TextEmbedding(nn.Module):
33
+ def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2):
34
+ super().__init__()
35
+ self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
36
+
37
+ if conv_layers > 0:
38
+ self.extra_modeling = True
39
+ self.precompute_max_pos = 4096 # ~44s of 24khz audio
40
+ self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False)
41
+ self.text_blocks = nn.Sequential(
42
+ *[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]
43
+ )
44
+ else:
45
+ self.extra_modeling = False
46
+
47
+ def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722
48
+ text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
49
+ text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
50
+ batch, text_len = text.shape[0], text.shape[1]
51
+ text = F.pad(text, (0, seq_len - text_len), value=0)
52
+
53
+ if drop_text: # cfg for text
54
+ text = torch.zeros_like(text)
55
+
56
+ text = self.text_embed(text) # b n -> b n d
57
+
58
+ # possible extra modeling
59
+ if self.extra_modeling:
60
+ # sinus pos emb
61
+ batch_start = torch.zeros((batch,), dtype=torch.long)
62
+ pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
63
+ text_pos_embed = self.freqs_cis[pos_idx]
64
+ text = text + text_pos_embed
65
+
66
+ # convnextv2 blocks
67
+ text = self.text_blocks(text)
68
+
69
+ return text
70
+
71
+
72
+ # noised input audio and context mixing embedding
73
+
74
+
75
+ class InputEmbedding(nn.Module):
76
+ def __init__(self, mel_dim, text_dim, out_dim):
77
+ super().__init__()
78
+ self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim)
79
+ self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)
80
+
81
+ self.proj_energy = nn.Linear(1, out_dim)
82
+ nn.init.zeros_(self.proj_energy.weight)
83
+ nn.init.zeros_(self.proj_energy.bias)
84
+
85
+ def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], drop_audio_cond=False, energy: float["b n 1"]|None=None): # noqa: F722
86
+ if drop_audio_cond: # cfg for cond audio
87
+ cond = torch.zeros_like(cond)
88
+
89
+ x = self.proj(torch.cat((x, cond, text_embed), dim=-1))
90
+
91
+ x = self.proj_energy(energy) + x
92
+
93
+ x = self.conv_pos_embed(x) + x
94
+ return x
95
+
96
+
97
+ # Transformer backbone using DiT blocks
98
+
99
+
100
+ class DiT(nn.Module):
101
+ def __init__(
102
+ self,
103
+ *,
104
+ dim,
105
+ depth=8,
106
+ heads=8,
107
+ dim_head=64,
108
+ dropout=0.1,
109
+ ff_mult=4,
110
+ mel_dim=100,
111
+ text_num_embeds=256,
112
+ text_dim=None,
113
+ conv_layers=0,
114
+ long_skip_connection=False,
115
+ checkpoint_activations=False,
116
+ ):
117
+ super().__init__()
118
+
119
+ self.time_embed = TimestepEmbedding(dim)
120
+ if text_dim is None:
121
+ text_dim = mel_dim
122
+ self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers)
123
+ self.input_embed = InputEmbedding(mel_dim, text_dim, dim)
124
+
125
+ self.rotary_embed = RotaryEmbedding(dim_head)
126
+
127
+ self.dim = dim
128
+ self.depth = depth
129
+
130
+ self.transformer_blocks = nn.ModuleList(
131
+ [DiTBlock(dim=dim, heads=heads, dim_head=dim_head, ff_mult=ff_mult, dropout=dropout) for _ in range(depth)]
132
+ )
133
+ self.long_skip_connection = nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None
134
+
135
+ self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
136
+ self.proj_out = nn.Linear(dim, mel_dim)
137
+
138
+ self.checkpoint_activations = checkpoint_activations
139
+
140
+ def ckpt_wrapper(self, module):
141
+ # https://github.com/chuanyangjin/fast-DiT/blob/main/models.py
142
+ def ckpt_forward(*inputs):
143
+ outputs = module(*inputs)
144
+ return outputs
145
+
146
+ return ckpt_forward
147
+
148
+ def forward(
149
+ self,
150
+ x: float["b n d"], # nosied input audio # noqa: F722
151
+ cond: float["b n d"], # masked cond audio # noqa: F722
152
+ text: int["b nt"], # text # noqa: F722
153
+ time: float["b"] | float[""], # time step # noqa: F821 F722
154
+ drop_audio_cond, # cfg for cond audio
155
+ drop_text, # cfg for text
156
+ mask: bool["b n"] | None = None, # noqa: F722
157
+ energy: float["b n 1"] | None = None,
158
+ ):
159
+ batch, seq_len = x.shape[0], x.shape[1]
160
+ if time.ndim == 0:
161
+ time = time.repeat(batch)
162
+
163
+ # t: conditioning time, c: context (text + masked cond audio), x: noised input audio
164
+ t = self.time_embed(time)
165
+ text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
166
+ x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond, energy=energy)
167
+
168
+ rope = self.rotary_embed.forward_from_seq_len(seq_len)
169
+
170
+ if self.long_skip_connection is not None:
171
+ residual = x
172
+
173
+ for block in self.transformer_blocks:
174
+ if self.checkpoint_activations:
175
+ x = torch.utils.checkpoint.checkpoint(self.ckpt_wrapper(block), x, t, mask, rope)
176
+ else:
177
+ x = block(x, t, mask=mask, rope=rope)
178
+
179
+ if self.long_skip_connection is not None:
180
+ x = self.long_skip_connection(torch.cat((x, residual), dim=-1))
181
+
182
+ x = self.norm_out(x, t)
183
+ output = self.proj_out(x)
184
+
185
+ return output
F5-TTS/src/f5_tts/model/backbones/mmdit.py ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ ein notation:
3
+ b - batch
4
+ n - sequence
5
+ nt - text sequence
6
+ nw - raw wave length
7
+ d - dimension
8
+ """
9
+
10
+ from __future__ import annotations
11
+
12
+ import torch
13
+ from torch import nn
14
+
15
+ from x_transformers.x_transformers import RotaryEmbedding
16
+
17
+ from f5_tts.model.modules import (
18
+ TimestepEmbedding,
19
+ ConvPositionEmbedding,
20
+ MMDiTBlock,
21
+ AdaLayerNormZero_Final,
22
+ precompute_freqs_cis,
23
+ get_pos_embed_indices,
24
+ )
25
+
26
+
27
+ # text embedding
28
+
29
+
30
+ class TextEmbedding(nn.Module):
31
+ def __init__(self, out_dim, text_num_embeds):
32
+ super().__init__()
33
+ self.text_embed = nn.Embedding(text_num_embeds + 1, out_dim) # will use 0 as filler token
34
+
35
+ self.precompute_max_pos = 1024
36
+ self.register_buffer("freqs_cis", precompute_freqs_cis(out_dim, self.precompute_max_pos), persistent=False)
37
+
38
+ def forward(self, text: int["b nt"], drop_text=False) -> int["b nt d"]: # noqa: F722
39
+ text = text + 1
40
+ if drop_text:
41
+ text = torch.zeros_like(text)
42
+ text = self.text_embed(text)
43
+
44
+ # sinus pos emb
45
+ batch_start = torch.zeros((text.shape[0],), dtype=torch.long)
46
+ batch_text_len = text.shape[1]
47
+ pos_idx = get_pos_embed_indices(batch_start, batch_text_len, max_pos=self.precompute_max_pos)
48
+ text_pos_embed = self.freqs_cis[pos_idx]
49
+
50
+ text = text + text_pos_embed
51
+
52
+ return text
53
+
54
+
55
+ # noised input & masked cond audio embedding
56
+
57
+
58
+ class AudioEmbedding(nn.Module):
59
+ def __init__(self, in_dim, out_dim):
60
+ super().__init__()
61
+ self.linear = nn.Linear(2 * in_dim, out_dim)
62
+ self.conv_pos_embed = ConvPositionEmbedding(out_dim)
63
+
64
+ def forward(self, x: float["b n d"], cond: float["b n d"], drop_audio_cond=False): # noqa: F722
65
+ if drop_audio_cond:
66
+ cond = torch.zeros_like(cond)
67
+ x = torch.cat((x, cond), dim=-1)
68
+ x = self.linear(x)
69
+ x = self.conv_pos_embed(x) + x
70
+ return x
71
+
72
+
73
+ # Transformer backbone using MM-DiT blocks
74
+
75
+
76
+ class MMDiT(nn.Module):
77
+ def __init__(
78
+ self,
79
+ *,
80
+ dim,
81
+ depth=8,
82
+ heads=8,
83
+ dim_head=64,
84
+ dropout=0.1,
85
+ ff_mult=4,
86
+ text_num_embeds=256,
87
+ mel_dim=100,
88
+ ):
89
+ super().__init__()
90
+
91
+ self.time_embed = TimestepEmbedding(dim)
92
+ self.text_embed = TextEmbedding(dim, text_num_embeds)
93
+ self.audio_embed = AudioEmbedding(mel_dim, dim)
94
+
95
+ self.rotary_embed = RotaryEmbedding(dim_head)
96
+
97
+ self.dim = dim
98
+ self.depth = depth
99
+
100
+ self.transformer_blocks = nn.ModuleList(
101
+ [
102
+ MMDiTBlock(
103
+ dim=dim,
104
+ heads=heads,
105
+ dim_head=dim_head,
106
+ dropout=dropout,
107
+ ff_mult=ff_mult,
108
+ context_pre_only=i == depth - 1,
109
+ )
110
+ for i in range(depth)
111
+ ]
112
+ )
113
+ self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
114
+ self.proj_out = nn.Linear(dim, mel_dim)
115
+
116
+ def forward(
117
+ self,
118
+ x: float["b n d"], # nosied input audio # noqa: F722
119
+ cond: float["b n d"], # masked cond audio # noqa: F722
120
+ text: int["b nt"], # text # noqa: F722
121
+ time: float["b"] | float[""], # time step # noqa: F821 F722
122
+ drop_audio_cond, # cfg for cond audio
123
+ drop_text, # cfg for text
124
+ mask: bool["b n"] | None = None, # noqa: F722
125
+ ):
126
+ batch = x.shape[0]
127
+ if time.ndim == 0:
128
+ time = time.repeat(batch)
129
+
130
+ # t: conditioning (time), c: context (text + masked cond audio), x: noised input audio
131
+ t = self.time_embed(time)
132
+ c = self.text_embed(text, drop_text=drop_text)
133
+ x = self.audio_embed(x, cond, drop_audio_cond=drop_audio_cond)
134
+
135
+ seq_len = x.shape[1]
136
+ text_len = text.shape[1]
137
+ rope_audio = self.rotary_embed.forward_from_seq_len(seq_len)
138
+ rope_text = self.rotary_embed.forward_from_seq_len(text_len)
139
+
140
+ for block in self.transformer_blocks:
141
+ c, x = block(x, c, t, mask=mask, rope=rope_audio, c_rope=rope_text)
142
+
143
+ x = self.norm_out(x, t)
144
+ output = self.proj_out(x)
145
+
146
+ return output
F5-TTS/src/f5_tts/model/backbones/unett.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ ein notation:
3
+ b - batch
4
+ n - sequence
5
+ nt - text sequence
6
+ nw - raw wave length
7
+ d - dimension
8
+ """
9
+
10
+ from __future__ import annotations
11
+ from typing import Literal
12
+
13
+ import torch
14
+ from torch import nn
15
+ import torch.nn.functional as F
16
+
17
+ from x_transformers import RMSNorm
18
+ from x_transformers.x_transformers import RotaryEmbedding
19
+
20
+ from f5_tts.model.modules import (
21
+ TimestepEmbedding,
22
+ ConvNeXtV2Block,
23
+ ConvPositionEmbedding,
24
+ Attention,
25
+ AttnProcessor,
26
+ FeedForward,
27
+ precompute_freqs_cis,
28
+ get_pos_embed_indices,
29
+ )
30
+
31
+
32
+ # Text embedding
33
+
34
+
35
+ class TextEmbedding(nn.Module):
36
+ def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2):
37
+ super().__init__()
38
+ self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
39
+
40
+ if conv_layers > 0:
41
+ self.extra_modeling = True
42
+ self.precompute_max_pos = 4096 # ~44s of 24khz audio
43
+ self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False)
44
+ self.text_blocks = nn.Sequential(
45
+ *[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]
46
+ )
47
+ else:
48
+ self.extra_modeling = False
49
+
50
+ def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722
51
+ text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
52
+ text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
53
+ batch, text_len = text.shape[0], text.shape[1]
54
+ text = F.pad(text, (0, seq_len - text_len), value=0)
55
+
56
+ if drop_text: # cfg for text
57
+ text = torch.zeros_like(text)
58
+
59
+ text = self.text_embed(text) # b n -> b n d
60
+
61
+ # possible extra modeling
62
+ if self.extra_modeling:
63
+ # sinus pos emb
64
+ batch_start = torch.zeros((batch,), dtype=torch.long)
65
+ pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
66
+ text_pos_embed = self.freqs_cis[pos_idx]
67
+ text = text + text_pos_embed
68
+
69
+ # convnextv2 blocks
70
+ text = self.text_blocks(text)
71
+
72
+ return text
73
+
74
+
75
+ # noised input audio and context mixing embedding
76
+
77
+
78
+ class InputEmbedding(nn.Module):
79
+ def __init__(self, mel_dim, text_dim, out_dim):
80
+ super().__init__()
81
+ self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim)
82
+ self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)
83
+
84
+ def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], drop_audio_cond=False): # noqa: F722
85
+ if drop_audio_cond: # cfg for cond audio
86
+ cond = torch.zeros_like(cond)
87
+
88
+ x = self.proj(torch.cat((x, cond, text_embed), dim=-1))
89
+ x = self.conv_pos_embed(x) + x
90
+ return x
91
+
92
+
93
+ # Flat UNet Transformer backbone
94
+
95
+
96
+ class UNetT(nn.Module):
97
+ def __init__(
98
+ self,
99
+ *,
100
+ dim,
101
+ depth=8,
102
+ heads=8,
103
+ dim_head=64,
104
+ dropout=0.1,
105
+ ff_mult=4,
106
+ mel_dim=100,
107
+ text_num_embeds=256,
108
+ text_dim=None,
109
+ conv_layers=0,
110
+ skip_connect_type: Literal["add", "concat", "none"] = "concat",
111
+ ):
112
+ super().__init__()
113
+ assert depth % 2 == 0, "UNet-Transformer's depth should be even."
114
+
115
+ self.time_embed = TimestepEmbedding(dim)
116
+ if text_dim is None:
117
+ text_dim = mel_dim
118
+ self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers)
119
+ self.input_embed = InputEmbedding(mel_dim, text_dim, dim)
120
+
121
+ self.rotary_embed = RotaryEmbedding(dim_head)
122
+
123
+ # transformer layers & skip connections
124
+
125
+ self.dim = dim
126
+ self.skip_connect_type = skip_connect_type
127
+ needs_skip_proj = skip_connect_type == "concat"
128
+
129
+ self.depth = depth
130
+ self.layers = nn.ModuleList([])
131
+
132
+ for idx in range(depth):
133
+ is_later_half = idx >= (depth // 2)
134
+
135
+ attn_norm = RMSNorm(dim)
136
+ attn = Attention(
137
+ processor=AttnProcessor(),
138
+ dim=dim,
139
+ heads=heads,
140
+ dim_head=dim_head,
141
+ dropout=dropout,
142
+ )
143
+
144
+ ff_norm = RMSNorm(dim)
145
+ ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
146
+
147
+ skip_proj = nn.Linear(dim * 2, dim, bias=False) if needs_skip_proj and is_later_half else None
148
+
149
+ self.layers.append(
150
+ nn.ModuleList(
151
+ [
152
+ skip_proj,
153
+ attn_norm,
154
+ attn,
155
+ ff_norm,
156
+ ff,
157
+ ]
158
+ )
159
+ )
160
+
161
+ self.norm_out = RMSNorm(dim)
162
+ self.proj_out = nn.Linear(dim, mel_dim)
163
+
164
+ def forward(
165
+ self,
166
+ x: float["b n d"], # nosied input audio # noqa: F722
167
+ cond: float["b n d"], # masked cond audio # noqa: F722
168
+ text: int["b nt"], # text # noqa: F722
169
+ time: float["b"] | float[""], # time step # noqa: F821 F722
170
+ drop_audio_cond, # cfg for cond audio
171
+ drop_text, # cfg for text
172
+ mask: bool["b n"] | None = None, # noqa: F722
173
+ ):
174
+ batch, seq_len = x.shape[0], x.shape[1]
175
+ if time.ndim == 0:
176
+ time = time.repeat(batch)
177
+
178
+ # t: conditioning time, c: context (text + masked cond audio), x: noised input audio
179
+ t = self.time_embed(time)
180
+ text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
181
+ x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
182
+
183
+ # postfix time t to input x, [b n d] -> [b n+1 d]
184
+ x = torch.cat([t.unsqueeze(1), x], dim=1) # pack t to x
185
+ if mask is not None:
186
+ mask = F.pad(mask, (1, 0), value=1)
187
+
188
+ rope = self.rotary_embed.forward_from_seq_len(seq_len + 1)
189
+
190
+ # flat unet transformer
191
+ skip_connect_type = self.skip_connect_type
192
+ skips = []
193
+ for idx, (maybe_skip_proj, attn_norm, attn, ff_norm, ff) in enumerate(self.layers):
194
+ layer = idx + 1
195
+
196
+ # skip connection logic
197
+ is_first_half = layer <= (self.depth // 2)
198
+ is_later_half = not is_first_half
199
+
200
+ if is_first_half:
201
+ skips.append(x)
202
+
203
+ if is_later_half:
204
+ skip = skips.pop()
205
+ if skip_connect_type == "concat":
206
+ x = torch.cat((x, skip), dim=-1)
207
+ x = maybe_skip_proj(x)
208
+ elif skip_connect_type == "add":
209
+ x = x + skip
210
+
211
+ # attention and feedforward blocks
212
+ x = attn(attn_norm(x), rope=rope, mask=mask) + x
213
+ x = ff(ff_norm(x)) + x
214
+
215
+ assert len(skips) == 0
216
+
217
+ x = self.norm_out(x)[:, 1:, :] # unpack t from x
218
+
219
+ return self.proj_out(x)