import os import numpy as np import torch import torch.nn as nn from transformers import Wav2Vec2Processor from transformers.models.wav2vec2.modeling_wav2vec2 import ( Wav2Vec2Model, Wav2Vec2PreTrainedModel, ) class RegressionHead(nn.Module): r"""Classification head.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.final_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x class EmotionModel(Wav2Vec2PreTrainedModel): r"""Speech emotion classifier.""" def __init__(self, config): super().__init__(config) self.config = config self.wav2vec2 = Wav2Vec2Model(config) self.classifier = RegressionHead(config) self.init_weights() def forward( self, input_values, ): outputs = self.wav2vec2(input_values) hidden_states = outputs[0] hidden_states = torch.mean(hidden_states, dim=1) logits = self.classifier(hidden_states) return hidden_states, logits def process_func( x: np.ndarray, sampling_rate: int, embeddings: bool = False, ) -> np.ndarray: r"""Predict emotions or extract embeddings from raw audio signal.""" # run through processor to normalize signal # always returns a batch, so we just get the first entry # then we put it on the device y = processor(x, sampling_rate=sampling_rate) y = y["input_values"][0] y = y.reshape(1, -1) y = torch.from_numpy(y).to(device) # run through model with torch.no_grad(): y = model(y)[0 if embeddings else 1] # convert to numpy y = y.detach().cpu().numpy() return y if __name__ == "__main__": from pathlib import Path import librosa from tqdm import tqdm import sys test_lst = sys.argv[1] output_path = sys.argv[2] device = "cpu" model_name = "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim" processor = Wav2Vec2Processor.from_pretrained(model_name) model = EmotionModel.from_pretrained(model_name).to(device) ecos = 0 nums = 0 not_found = 0 with open(test_lst, "r") as fr: lines = fr.readlines() path = output_path for idx, line in enumerate(lines): gen_wav = path + "gen/" + str(idx).zfill(8) + ".wav" target = path + "tgt/" + str(idx).zfill(8) + ".wav" if Path(gen_wav).exists() and Path(target).exists(): try: wav = librosa.load(gen_wav, sr=16000)[0] except Exception as e: print(f"Error in {gen_wav}, {e}") not_found += 1 continue try: target = librosa.load(target, sr=16000)[0] except Exception as e: not_found += 1 print(f"Error in {target}, {e}") continue with torch.inference_mode(): gen_emo_embs = process_func(wav, 16000, embeddings=True) target_emo_embs = process_func(target, 16000, embeddings=True) emo_cos = np.sum(gen_emo_embs * target_emo_embs) / ( np.linalg.norm(gen_emo_embs) * np.linalg.norm(target_emo_embs) ) emo_acc = emo_cos * 100 else: # raise FileNotFoundError(wav, target) not_found += 1 continue _cos = emo_acc ecos += _cos nums += 1 print(f"EMO_SIM: {ecos / nums:.3f}")