import os from pathlib import Path import librosa import numpy as np import torch # from datasets import load_dataset from tqdm import tqdm from transformers import Wav2Vec2FeatureExtractor, WavLMForXVector import sys test_lst = sys.argv[1] output_path = sys.argv[2] # dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("microsoft/wavlm-base-sv") model = WavLMForXVector.from_pretrained("microsoft/wavlm-base-sv").cuda() # the resulting embeddings can be used for cosine similarity-based retrieval cosine_sim = torch.nn.CosineSimilarity(dim=-1) with open(test_lst, "r") as fr: lines = fr.readlines() path = output_path scos = [] #for line in tqdm(val_list): for idx, line in enumerate(lines): gen_wav = path + "gen/" + str(idx).zfill(8) + ".wav" target = path + "tgt/" + str(idx).zfill(8) + ".wav" if Path(gen_wav).exists() and Path(target).exists(): try: wav = librosa.load(gen_wav, sr=16000)[0] except Exception as e: print(f"Error in {gen_wav}, {e}") continue try: target = librosa.load(target, sr=16000)[0] except Exception as e: print(f"Error in {target}, {e}") continue try: # audio files are decoded on the fly input1 = feature_extractor(wav, return_tensors="pt", sampling_rate=16000).to("cuda") embeddings1 = model(**input1).embeddings input2 = feature_extractor(target, return_tensors="pt", sampling_rate=16000).to("cuda") embeddings2 = model(**input2).embeddings similarity = cosine_sim(embeddings1[0], embeddings2[0]) except Exception as e: print(f"Error in {gen_wav}, {e}") continue if 0 < similarity < 1: scos.append(similarity.detach().cpu().numpy()) print("SPK-SIM:", np.mean(scos), len(scos))