Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,76 +1,176 @@
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
4 |
-
from PIL import Image
|
5 |
-
from byaldi import RAGMultiModalModel
|
6 |
from qwen_vl_utils import process_vision_info
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
QWN_MODEL = "Qwen/Qwen2-VL-7B-Instruct"
|
11 |
|
|
|
12 |
@st.cache_resource
|
13 |
def load_models():
|
14 |
-
RAG = RAGMultiModalModel.from_pretrained(
|
15 |
|
16 |
-
|
17 |
-
|
18 |
torch_dtype=torch.bfloat16,
|
19 |
attn_implementation="flash_attention_2",
|
20 |
device_map="auto",
|
21 |
trust_remote_code=True
|
22 |
-
).eval()
|
23 |
|
24 |
-
|
25 |
|
26 |
-
return RAG,
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
messages = [
|
32 |
{
|
33 |
"role": "user",
|
34 |
"content": [
|
|
|
|
|
|
|
|
|
35 |
{
|
36 |
"type": "image",
|
37 |
"image": image,
|
38 |
},
|
39 |
-
{"type": "text", "text": text_query},
|
40 |
],
|
41 |
}
|
42 |
]
|
43 |
-
text =
|
44 |
messages, tokenize=False, add_generation_prompt=True
|
45 |
)
|
46 |
image_inputs, video_inputs = process_vision_info(messages)
|
47 |
-
inputs =
|
48 |
text=[text],
|
49 |
images=image_inputs,
|
50 |
videos=video_inputs,
|
51 |
padding=True,
|
52 |
return_tensors="pt",
|
53 |
)
|
54 |
-
inputs = inputs.to(
|
55 |
-
generated_ids =
|
56 |
generated_ids_trimmed = [
|
57 |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
58 |
]
|
59 |
-
output_text =
|
60 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
61 |
)
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
|
69 |
-
|
|
|
|
|
|
|
70 |
image = Image.open(uploaded_file)
|
71 |
-
|
72 |
-
|
|
|
73 |
with st.spinner("Processing..."):
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
|
|
|
|
4 |
from qwen_vl_utils import process_vision_info
|
5 |
+
from byaldi import RAGMultiModalModel
|
6 |
+
from PIL import Image
|
7 |
+
import io
|
8 |
+
import time
|
9 |
+
import nltk
|
10 |
+
from nltk.translate.bleu_score import sentence_bleu
|
11 |
|
12 |
+
# Download NLTK data for BLEU score calculation
|
13 |
+
nltk.download('punkt', quiet=True)
|
|
|
14 |
|
15 |
+
# Load models and processors
|
16 |
@st.cache_resource
|
17 |
def load_models():
|
18 |
+
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
|
19 |
|
20 |
+
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
21 |
+
"Qwen/Qwen2-VL-7B-Instruct",
|
22 |
torch_dtype=torch.bfloat16,
|
23 |
attn_implementation="flash_attention_2",
|
24 |
device_map="auto",
|
25 |
trust_remote_code=True
|
26 |
+
).cuda().eval()
|
27 |
|
28 |
+
qwen_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
|
29 |
|
30 |
+
return RAG, qwen_model, qwen_processor
|
31 |
+
|
32 |
+
RAG, qwen_model, qwen_processor = load_models()
|
33 |
+
|
34 |
+
# Function to get current CUDA memory usage
|
35 |
+
def get_cuda_memory_usage():
|
36 |
+
return torch.cuda.memory_allocated() / 1024**2 # Convert to MB
|
37 |
|
38 |
+
# Define processing functions
|
39 |
+
def extract_text_with_colpali(image):
|
40 |
+
start_time = time.time()
|
41 |
+
start_memory = get_cuda_memory_usage()
|
42 |
+
|
43 |
+
extracted_text = RAG.extract_text(image)
|
44 |
+
|
45 |
+
end_time = time.time()
|
46 |
+
end_memory = get_cuda_memory_usage()
|
47 |
+
|
48 |
+
return extracted_text, {
|
49 |
+
'time': end_time - start_time,
|
50 |
+
'memory': end_memory - start_memory
|
51 |
+
}
|
52 |
|
53 |
+
def process_with_qwen(query, extracted_text, image, extract_mode=False):
|
54 |
+
start_time = time.time()
|
55 |
+
start_memory = get_cuda_memory_usage()
|
56 |
+
|
57 |
+
if extract_mode:
|
58 |
+
instruction = "Extract and list all text visible in this image, including both printed and handwritten text."
|
59 |
+
else:
|
60 |
+
instruction = f"Context: {extracted_text}\n\nQuery: {query}"
|
61 |
+
|
62 |
messages = [
|
63 |
{
|
64 |
"role": "user",
|
65 |
"content": [
|
66 |
+
{
|
67 |
+
"type": "text",
|
68 |
+
"text": instruction
|
69 |
+
},
|
70 |
{
|
71 |
"type": "image",
|
72 |
"image": image,
|
73 |
},
|
|
|
74 |
],
|
75 |
}
|
76 |
]
|
77 |
+
text = qwen_processor.apply_chat_template(
|
78 |
messages, tokenize=False, add_generation_prompt=True
|
79 |
)
|
80 |
image_inputs, video_inputs = process_vision_info(messages)
|
81 |
+
inputs = qwen_processor(
|
82 |
text=[text],
|
83 |
images=image_inputs,
|
84 |
videos=video_inputs,
|
85 |
padding=True,
|
86 |
return_tensors="pt",
|
87 |
)
|
88 |
+
inputs = inputs.to("cuda")
|
89 |
+
generated_ids = qwen_model.generate(**inputs, max_new_tokens=200)
|
90 |
generated_ids_trimmed = [
|
91 |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
92 |
]
|
93 |
+
output_text = qwen_processor.batch_decode(
|
94 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
95 |
)
|
96 |
+
|
97 |
+
end_time = time.time()
|
98 |
+
end_memory = get_cuda_memory_usage()
|
99 |
+
|
100 |
+
return output_text[0], {
|
101 |
+
'time': end_time - start_time,
|
102 |
+
'memory': end_memory - start_memory
|
103 |
+
}
|
104 |
|
105 |
+
# Function to calculate BLEU score
|
106 |
+
def calculate_bleu(reference, hypothesis):
|
107 |
+
reference_tokens = nltk.word_tokenize(reference.lower())
|
108 |
+
hypothesis_tokens = nltk.word_tokenize(hypothesis.lower())
|
109 |
+
return sentence_bleu([reference_tokens], hypothesis_tokens)
|
110 |
|
111 |
+
# Streamlit UI
|
112 |
+
st.title("Document Processing with ColPali and Qwen")
|
113 |
|
114 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
115 |
+
query = st.text_input("Enter your query:")
|
116 |
+
|
117 |
+
if uploaded_file is not None and query:
|
118 |
image = Image.open(uploaded_file)
|
119 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
120 |
+
|
121 |
+
if st.button("Process"):
|
122 |
with st.spinner("Processing..."):
|
123 |
+
# Extract text using ColPali
|
124 |
+
colpali_extracted_text, colpali_metrics = extract_text_with_colpali(image)
|
125 |
+
|
126 |
+
# Extract text using Qwen
|
127 |
+
qwen_extracted_text, qwen_extract_metrics = process_with_qwen("", "", image, extract_mode=True)
|
128 |
+
|
129 |
+
# Process the query with Qwen2, using both extracted text and image
|
130 |
+
qwen_response, qwen_response_metrics = process_with_qwen(query, colpali_extracted_text, image)
|
131 |
+
|
132 |
+
# Calculate BLEU score between ColPali and Qwen extractions
|
133 |
+
bleu_score = calculate_bleu(colpali_extracted_text, qwen_extracted_text)
|
134 |
+
|
135 |
+
# Display results
|
136 |
+
st.subheader("Results")
|
137 |
+
st.write("ColPali Extracted Text:")
|
138 |
+
st.write(colpali_extracted_text)
|
139 |
+
|
140 |
+
st.write("Qwen Extracted Text:")
|
141 |
+
st.write(qwen_extracted_text)
|
142 |
+
|
143 |
+
st.write("Qwen Response:")
|
144 |
+
st.write(qwen_response)
|
145 |
+
|
146 |
+
# Display metrics
|
147 |
+
st.subheader("Metrics")
|
148 |
+
|
149 |
+
st.write("ColPali Extraction:")
|
150 |
+
st.write(f"Time: {colpali_metrics['time']:.2f} seconds")
|
151 |
+
st.write(f"Memory: {colpali_metrics['memory']:.2f} MB")
|
152 |
+
|
153 |
+
st.write("Qwen Extraction:")
|
154 |
+
st.write(f"Time: {qwen_extract_metrics['time']:.2f} seconds")
|
155 |
+
st.write(f"Memory: {qwen_extract_metrics['memory']:.2f} MB")
|
156 |
+
|
157 |
+
st.write("Qwen Response:")
|
158 |
+
st.write(f"Time: {qwen_response_metrics['time']:.2f} seconds")
|
159 |
+
st.write(f"Memory: {qwen_response_metrics['memory']:.2f} MB")
|
160 |
+
|
161 |
+
st.write(f"BLEU Score: {bleu_score:.4f}")
|
162 |
+
|
163 |
+
st.markdown("""
|
164 |
+
## How to Use
|
165 |
+
|
166 |
+
1. Upload an image containing text or a document.
|
167 |
+
2. Enter your query about the document.
|
168 |
+
3. Click 'Process' to see the results.
|
169 |
+
|
170 |
+
The app will display:
|
171 |
+
- Text extracted by ColPali
|
172 |
+
- Text extracted by Qwen
|
173 |
+
- Qwen's response to your query
|
174 |
+
- Performance metrics for each step
|
175 |
+
- BLEU score comparing ColPali and Qwen extractions
|
176 |
+
""")
|