Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import numpy as np
|
| 4 |
+
import faiss
|
| 5 |
+
from mistralai import Mistral
|
| 6 |
+
|
| 7 |
+
api_key = os.getenv("MISTRAL_API_KEY")
|
| 8 |
+
client = Mistral(api_key=api_key)
|
| 9 |
+
|
| 10 |
+
# =============================================================================
|
| 11 |
+
# BASIC CHAT UI (Gradio Version)
|
| 12 |
+
# =============================================================================
|
| 13 |
+
|
| 14 |
+
def run_mistral_basic(message, history):
|
| 15 |
+
"""Basic chat function for Gradio ChatInterface"""
|
| 16 |
+
messages = [{"role": "user", "content": message}]
|
| 17 |
+
chat_response = client.chat.complete(
|
| 18 |
+
model="mistral-large-latest",
|
| 19 |
+
messages=messages
|
| 20 |
+
)
|
| 21 |
+
return chat_response.choices[0].message.content
|
| 22 |
+
|
| 23 |
+
# Create basic chat interface
|
| 24 |
+
basic_chat = gr.ChatInterface(
|
| 25 |
+
fn=run_mistral_basic,
|
| 26 |
+
title="Basic Mistral Chat",
|
| 27 |
+
description="Chat with Mistral AI"
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# =============================================================================
|
| 31 |
+
# RAG UI (Gradio Version)
|
| 32 |
+
# =============================================================================
|
| 33 |
+
|
| 34 |
+
# Global variable to store processed document
|
| 35 |
+
processed_chunks = None
|
| 36 |
+
faiss_index = None
|
| 37 |
+
|
| 38 |
+
def get_text_embedding(input_text):
|
| 39 |
+
"""Get embeddings from Mistral"""
|
| 40 |
+
embeddings_batch_response = client.embeddings.create(
|
| 41 |
+
model="mistral-embed",
|
| 42 |
+
inputs=[input_text]
|
| 43 |
+
)
|
| 44 |
+
return embeddings_batch_response.data[0].embedding
|
| 45 |
+
|
| 46 |
+
def process_document(file):
|
| 47 |
+
"""Process uploaded document and create FAISS index"""
|
| 48 |
+
global processed_chunks, faiss_index
|
| 49 |
+
|
| 50 |
+
if file is None:
|
| 51 |
+
return "Please upload a text file first."
|
| 52 |
+
|
| 53 |
+
try:
|
| 54 |
+
# Read the file
|
| 55 |
+
with open(file.name, 'r', encoding='utf-8') as f:
|
| 56 |
+
text = f.read()
|
| 57 |
+
|
| 58 |
+
# Split document into chunks
|
| 59 |
+
chunk_size = 2048
|
| 60 |
+
processed_chunks = [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
|
| 61 |
+
|
| 62 |
+
# Create embeddings and FAISS index
|
| 63 |
+
text_embeddings = np.array([get_text_embedding(chunk) for chunk in processed_chunks])
|
| 64 |
+
d = text_embeddings.shape[1]
|
| 65 |
+
faiss_index = faiss.IndexFlatL2(d)
|
| 66 |
+
faiss_index.add(text_embeddings.astype(np.float32))
|
| 67 |
+
|
| 68 |
+
return f"Document processed successfully! Split into {len(processed_chunks)} chunks."
|
| 69 |
+
|
| 70 |
+
except Exception as e:
|
| 71 |
+
return f"Error processing document: {str(e)}"
|
| 72 |
+
|
| 73 |
+
def rag_chat(message, history):
|
| 74 |
+
"""RAG chat function for Gradio"""
|
| 75 |
+
global processed_chunks, faiss_index
|
| 76 |
+
|
| 77 |
+
if processed_chunks is None or faiss_index is None:
|
| 78 |
+
return "Please upload and process a document first."
|
| 79 |
+
|
| 80 |
+
try:
|
| 81 |
+
# Create prompt template
|
| 82 |
+
prompt_template = """
|
| 83 |
+
Context information is below.
|
| 84 |
+
---------------------
|
| 85 |
+
{retrieved_chunk}
|
| 86 |
+
---------------------
|
| 87 |
+
Given the context information and not prior knowledge, answer the query.
|
| 88 |
+
Query: {question}
|
| 89 |
+
Answer:
|
| 90 |
+
"""
|
| 91 |
+
|
| 92 |
+
# Get question embedding
|
| 93 |
+
question_embedding = np.array([get_text_embedding(message)])
|
| 94 |
+
|
| 95 |
+
# Search for similar chunks
|
| 96 |
+
D, I = faiss_index.search(question_embedding.astype(np.float32), k=2)
|
| 97 |
+
retrieved_chunks = [processed_chunks[i] for i in I.tolist()[0]]
|
| 98 |
+
|
| 99 |
+
# Generate response
|
| 100 |
+
prompt = prompt_template.format(
|
| 101 |
+
retrieved_chunk=retrieved_chunks,
|
| 102 |
+
question=message
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
messages = [{"role": "user", "content": prompt}]
|
| 106 |
+
chat_response = client.chat.complete(
|
| 107 |
+
model="mistral-large-latest",
|
| 108 |
+
messages=messages
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
return chat_response.choices[0].message.content
|
| 112 |
+
|
| 113 |
+
except Exception as e:
|
| 114 |
+
return f"Error generating response: {str(e)}"
|
| 115 |
+
|
| 116 |
+
# =============================================================================
|
| 117 |
+
# GRADIO INTERFACES
|
| 118 |
+
# =============================================================================
|
| 119 |
+
|
| 120 |
+
# Create RAG interface with file upload
|
| 121 |
+
with gr.Blocks(title="RAG Chat with Mistral") as rag_interface:
|
| 122 |
+
gr.Markdown("# RAG Chat Interface")
|
| 123 |
+
gr.Markdown("Upload a text file and chat with its content!")
|
| 124 |
+
|
| 125 |
+
with gr.Row():
|
| 126 |
+
file_upload = gr.File(
|
| 127 |
+
label="Upload Text File",
|
| 128 |
+
file_types=[".txt"],
|
| 129 |
+
type="filepath"
|
| 130 |
+
)
|
| 131 |
+
process_btn = gr.Button("Process Document", variant="primary")
|
| 132 |
+
|
| 133 |
+
process_status = gr.Textbox(
|
| 134 |
+
label="Processing Status",
|
| 135 |
+
interactive=False,
|
| 136 |
+
placeholder="Upload a file and click 'Process Document'"
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
# Chat interface
|
| 140 |
+
chatbot = gr.Chatbot(label="RAG Chat")
|
| 141 |
+
msg = gr.Textbox(
|
| 142 |
+
label="Your Message",
|
| 143 |
+
placeholder="Ask questions about the uploaded document...",
|
| 144 |
+
lines=2
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
with gr.Row():
|
| 148 |
+
submit_btn = gr.Button("Send", variant="primary")
|
| 149 |
+
clear_btn = gr.Button("Clear Chat")
|
| 150 |
+
|
| 151 |
+
# Event handlers
|
| 152 |
+
process_btn.click(
|
| 153 |
+
process_document,
|
| 154 |
+
inputs=[file_upload],
|
| 155 |
+
outputs=[process_status]
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
def respond(message, chat_history):
|
| 159 |
+
if not message.strip():
|
| 160 |
+
return "", chat_history
|
| 161 |
+
|
| 162 |
+
# Add user message to history
|
| 163 |
+
chat_history.append([message, None])
|
| 164 |
+
|
| 165 |
+
# Get bot response
|
| 166 |
+
bot_response = rag_chat(message, chat_history)
|
| 167 |
+
|
| 168 |
+
# Add bot response to history
|
| 169 |
+
chat_history[-1][1] = bot_response
|
| 170 |
+
|
| 171 |
+
return "", chat_history
|
| 172 |
+
|
| 173 |
+
submit_btn.click(
|
| 174 |
+
respond,
|
| 175 |
+
inputs=[msg, chatbot],
|
| 176 |
+
outputs=[msg, chatbot]
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
msg.submit(
|
| 180 |
+
respond,
|
| 181 |
+
inputs=[msg, chatbot],
|
| 182 |
+
outputs=[msg, chatbot]
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
clear_btn.click(lambda: ([], ""), outputs=[chatbot, msg])
|
| 186 |
+
|
| 187 |
+
if __name__ == "__main__":
|
| 188 |
+
rag_interface.launch(share=True)
|
| 189 |
+
|