File size: 7,923 Bytes
94fe463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f25eac2
94fe463
 
 
 
 
 
289d09a
94fe463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f0c576
94fe463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f0c576
289d09a
94fe463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f0c576
 
 
 
 
 
 
 
 
289d09a
 
 
 
 
 
 
 
682f3ef
289d09a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f0c576
 
 
 
 
 
 
 
 
 
 
 
94fe463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
289d09a
 
 
 
94fe463
 
 
 
 
 
 
 
 
 
3f0c576
94fe463
 
3f0c576
289d09a
94fe463
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.middleware.cors import CORSMiddleware
import numpy as np
import tensorflow as tf
from PIL import Image
import io
import keras
import os
import gdown
from keras.saving import register_keras_serializable

# Enable unsafe deserialization for custom Lambda layers
keras.config.enable_unsafe_deserialization()

# --- CUSTOM FUNCTION ---
@register_keras_serializable(package="Custom", name="CustomMaxPool")
def custom_max_pool(x):
    return tf.reduce_max(x, axis=[1, 2], keepdims=True)

# --- CONFIG ---
IMG_SIZE = 224
NUM_CLASSES = 23
USE_METADATA_ADJUSTMENT = True  # Toggle on/off

MODEL_PATHS = {
    "EfficientNetB3": "saved_models/EfficientNetB3_recovered.keras",
    "ResNet50": "saved_models/ResNet50_recovered.keras",
    "MobileNetV2": "saved_models/MobileNetV2_recovered.keras",
    "DenseNet121": "saved_models/DenseNet121_recovered.keras"
}

MODEL_URLS = {
    "EfficientNetB3": "https://drive.google.com/uc?id=1jP4-HoFFbGIFugqgRpVVt0V3LhOoKVkY",
    "ResNet50": "https://drive.google.com/uc?id=1yv4duVkGHTyLEpw92CCJcUy9Y1VxC6Ec",
    "MobileNetV2": "https://drive.google.com/uc?id=1fJtogp6fH7F2Wa2YvN_KTklgK2-ufqMN",
    "DenseNet121": "https://drive.google.com/uc?id=1lJ0nlTP7cMTglEM6XIaTvAEZHVJ4dsN8"
}

MODEL_WEIGHTS = {
    "EfficientNetB3": 0.260,
    "ResNet50": 0.256,
    "MobileNetV2": 0.222,
    "DenseNet121": 0.261
}

PREPROCESS_FUNCS = {
    "EfficientNetB3": tf.keras.applications.efficientnet.preprocess_input,
    "ResNet50": tf.keras.applications.resnet.preprocess_input,
    "MobileNetV2": tf.keras.applications.mobilenet_v2.preprocess_input,
    "DenseNet121": tf.keras.applications.densenet.preprocess_input
}

# --- FASTAPI SETUP ---
app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@app.get("/")
def root():
    return {"status": "🩺 App is running."}

models = {}

@app.on_event("startup")
def load_models():
    global models
    os.makedirs("saved_models", exist_ok=True)
    for name, path in MODEL_PATHS.items():
        if not os.path.exists(path):
            gdown.download(MODEL_URLS[name], path, quiet=False)
        models[name] = tf.keras.models.load_model(path)

# --- UTILS ---
def read_imagefile(file) -> Image.Image:
    image = Image.open(io.BytesIO(file))
    return image.convert("RGB")

def predict_ensemble(image):
    image = image.resize((IMG_SIZE, IMG_SIZE))
    image_array = np.array(image)
    ensemble_pred = np.zeros((NUM_CLASSES,))
    for name, model in models.items():
        preproc = PREPROCESS_FUNCS[name]
        img_proc = preproc(image_array.copy())
        img_proc = np.expand_dims(img_proc, axis=0)
        pred = model.predict(img_proc, verbose=0)[0]
        ensemble_pred += pred * MODEL_WEIGHTS[name]
    return ensemble_pred

# --- ADJUST WITH METADATA ---
def adjust_with_metadata(predictions, metadata):
    age = int(metadata.get("age", 30))
    condition = metadata.get("condition", "").lower()
    skin_type = metadata.get("skin_type", "").lower()
    gender = metadata.get("gender", "").lower()
    race = metadata.get("race", "").lower()

    rules = [
        {"keyword": "acne", "condition": age > 40, "factor": 0.6},
        {"keyword": "acne", "condition": age < 25, "factor": 1.2},
        {"keyword": "eczema", "condition": skin_type == "dry", "factor": 1.2},
        {"keyword": "eczema", "condition": skin_type == "oily", "factor": 0.8},
        {"keyword": "warts", "condition": age < 12, "factor": 1.3},
        {"keyword": "fungal", "condition": "itchy" in condition, "factor": 1.2},
        {"keyword": "hair loss", "condition": gender == "male" and age > 40, "factor": 1.3},
        {"keyword": "lupus", "condition": gender == "female", "factor": 1.2},
        {"keyword": "melanoma", "condition": skin_type == "light" and age > 50, "factor": 1.3},
        {"keyword": "nail fungus", "condition": age > 60, "factor": 1.3},
        {"keyword": "psoriasis", "condition": "flaky" in condition or "dry" in skin_type, "factor": 1.2},
        {"keyword": "systemic", "condition": "fatigue" in condition or "pain" in condition, "factor": 1.2},
        {"keyword": "urticaria", "condition": "allergy" in condition or "hives" in condition, "factor": 1.3},
        {"keyword": "contact dermatitis", "condition": "red" in condition or "burning" in condition, "factor": 1.2},
        {"keyword": "seborrheic", "condition": age > 60, "factor": 1.2},
        {"keyword": "bullous", "condition": age > 60, "factor": 1.3},
        {"keyword": "vasculitis", "condition": "joint" in condition or "swelling" in condition, "factor": 1.2},
        {"keyword": "atopic dermatitis", "condition": age < 10, "factor": 1.2},
        {"keyword": "pigmentation", "condition": skin_type == "dark", "factor": 1.3},
        {"keyword": "hpv", "condition": age > 18, "factor": 1.2},
        {"keyword": "vascular tumors", "condition": age < 5, "factor": 1.3},
        {"keyword": "poison ivy", "condition": "rash" in condition or "camping" in condition, "factor": 1.3},
        {"keyword": "bacterial", "condition": "pus" in condition or "fever" in condition, "factor": 1.3},
        {"keyword": "drug eruption", "condition": "medication" in condition or "rash" in condition, "factor": 1.3},
        {"keyword": "connective tissue", "condition": "joint" in condition or "fatigue" in condition, "factor": 1.3},
    ]

    adjusted = []
    for pred in predictions:
        label = pred["label"]
        score = pred["confidence"]
        for rule in rules:
            if rule["keyword"] in label.lower() and rule["condition"]:
                score *= rule["factor"]
        adjusted.append({"label": label, "confidence": score})

    return sorted(adjusted, key=lambda x: x["confidence"], reverse=True)[:3]

# --- PREDICT ENDPOINT ---
@app.post("/predict/")
async def predict(
    file: UploadFile = File(...),
    age: int = Form(...),
    race: str = Form(...),
    gender: str = Form(...),
    skin_color: str = Form(...),
    skin_type: str = Form(...),
    condition_description: str = Form(...)
):
    image = read_imagefile(await file.read())
    prediction = predict_ensemble(image)

    class_labels = [
        "Acne and Rosacea Photos",
        "Actinic Keratosis Basal Cell Carcinoma and other Malignant Lesions",
        "Atopic Dermatitis Photos",
        "Bullous Disease Photos",
        "Cellulitis Impetigo and other Bacterial Infections",
        "Eczema Photos",
        "Exanthems and Drug Eruptions",
        "Hair Loss Photos Alopecia and other Hair Diseases",
        "Herpes HPV and other STDs Photos",
        "Light Diseases and Disorders of Pigmentation",
        "Lupus and other Connective Tissue diseases",
        "Melanoma Skin Cancer Nevi and Moles",
        "Nail Fungus and other Nail Disease",
        "Poison Ivy Photos and other Contact Dermatitis",
        "Psoriasis pictures Lichen Planus and related diseases",
        "Scabies Lyme Disease and other Infestations and Bites",
        "Seborrheic Keratoses and other Benign Tumors",
        "Systemic Disease",
        "Tinea Ringworm Candidiasis and other Fungal Infections",
        "Urticaria Hives",
        "Vascular Tumors",
        "Vasculitis Photos",
        "Warts Molluscum and other Viral Infections"
    ]

    top3_indices = prediction.argsort()[-3:][::-1]
    top_preds = [
        {"label": class_labels[i], "confidence": float(prediction[i])}
        for i in top3_indices
    ]

    metadata = {
        "age": age,
        "race": race,
        "gender": gender,
        "skin_color": skin_color,
        "skin_type": skin_type,
        "condition": condition_description
    }

    final_preds = adjust_with_metadata(top_preds, metadata) if USE_METADATA_ADJUSTMENT else top_preds

    return {
        "prediction": final_preds,
        "metadata": metadata
    }