Spaces:
Sleeping
Sleeping
File size: 1,582 Bytes
f531dbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
# 加载模型和分词器
model_name = "SecurityXuanwuLab/HaS-820m"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# 定义推理函数
def predict(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class = torch.argmax(logits, dim=-1).item()
return f"预测类别:{predicted_class}"
theme = gr.themes.Monochrome(
primary_hue="stone",
secondary_hue="stone",
neutral_hue="stone",
).set(
body_background_fill='*secondary_200',
body_background_fill_dark='*secondary_200',
body_text_color='*secondary_950',
body_text_color_dark='*secondary_200',
body_text_color_subdued='*secondary_500',
body_text_color_subdued_dark='*secondary_500'
)
# 使用 Gradio 的内置主题构建界面
with gr.Blocks(theme=theme) as demo:
gr.Markdown("<h1 style='text-align: center;'>模型试用:腾讯玄武</h1>")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="输入文本", placeholder="请输入文本处理...", lines=4)
output_text = gr.Textbox(label="处理结果", interactive=False)
with gr.Row():
predict_btn = gr.Button("进行处理")
predict_btn.click(predict, inputs=input_text, outputs=output_text)
# 启动界面
demo.launch()
|